CPU Caches and Why You Care

CPU Caches and Why You Care

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/974-1887

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Last Revised: 3/21/11

CPU Caches

Two ways to traverse a matrix:

® Each touches exactly the same memory.

Row Major Column Major
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 2
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

Scott
Sticky Note
There are the notes from my presentation at the ACCU 2011 Conference.

Scott

CPU Caches and Why You Care

CPU Caches

Code very similar:

void sumMatrix(const Matrix<int>& m,
long long& sum, TraversalOrder order)
{

sum = 0;

if (order == RowMajor) {
for (unsigned r = 0; r < m.rows(); ++r) {
for (unsigned ¢ = 0; ¢ < m.columns(); ++c) {
sum += mir][c];

} else {
for (unsigned ¢ = 0; ¢ < m.columns(); ++c) {
for (unsigned r = 0; r < m.rows(); ++r) {
sum += mir][c];

}
}
}

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 3

CPU Caches
Performance isn’t:

450.00

400.00

350.00 —
% 300.00 —
E, .
@ . + MSVC RM
E 20000 L = MSVC CM
T 200.00 BELRM
5 ‘ GCC CM
5
= 150.00 2

100.00 = et

50.00 o . -

pr® cia
0.00 +== : ; : : ; :
0 5 10 15 20 25 30 35
Matrix Size (MB)
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 4
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

CPU Caches
Traversal order matters.
Why?
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 5

CPU Caches

Herb Sutter’s scalability issue in counting odd matrix elements.

® Square matrix of side DIM matrix ——
with memory in array matrix.

DIM

® Sequential pseudocode:

int odds = 0; DIM
for(inti=0;i<DIM; ++i)
for(intj=0;j < DIM; ++j)
if(matrix[i*DIM +j] % 2 !=0)
++odds;

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 6

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

CPU Caches

® Parallel pseudocode, take 1:
int result[P];

/I Each of P parallel workers processes 1/P-th of the data;
/I the p-th worker records its partial count in result[p]
for(intp=0; p<P; ++p)
pool.run([&,p] {
result[p] = O; DIM
int chunkSize = DIM/P + 1,
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM); DIM
for(int i = myStart; i < myEnd; ++i)
for(intj=0;j<DIM; ++))
if(matrix[i*DIM +j] % 2!=0)
++result[p]; });

pool.join(); /l Wait for all tasks to complete

odds = 0; /I combine the results
for(intp=0; p<P; ++p)
odds += result[p];

matrix ——»

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 7

CPU Caches

Scalability unimpressive:

Speedup for Example 1
16
14 L1
*%
. * Faster than
E 1 - &
3 ot 1 core
3 e -
3 oo Slower than
% - ¢
¥ Radhil s 1 core
£y ¥
Fi
g‘_ 04
0
0 5 10 it L] 5
Threads
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 8

Scott Meyers, Software Development Consultant

http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

CPU Caches and Why You Care

CPU Caches

® Parallel pseudocode, take 2:
int result[P];

for(intp=0; p<P; ++p)
pool.run([&,p] {
int count = 0O;
int chunkSize = DIM/P + 1,
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)
for(intj=0;j < DIM; ++j)
if(matrix[i*DIM +j] % 2!=0)
++count;
result[p] = count; });

Il instead of result[p]

/I instead of result[p]
/I new statement

/l nothing else changes

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 9

CPU Caches

Scalability now perfect!

Speedup for Example 2

Spaedup over 1-thresd baseline

& Thraads

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 10

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

CPU Caches and Why You Care

CPU Caches
Thread memory access matters.
Why?
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 11

CPU Caches

Small amounts of unusually fast memory.
® Generally hold contents of recently accessed memory locations.

® Access latency much smaller than for main memory.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 12
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

CPU Caches

Three common types:
® Data (D-cache)
® [nstruction (I-cache)

® Translation lookaside buffer (TLB)
» Caches virtual—real address translations

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 13

Voices of Experience

Sergey Solyanik (from Microsoft):

Linux was routing packets at ~30Mbps [wired], and wireless at
~20. Windows CE was crawling at barely 12Mbps wired and
6Mbps wireless. ...

We found out Windows CE had a LOT more instruction cache
misses than Linux. ...

After we changed the routing algorithm to be more cache-local, we
started doing 35MBps [wired], and 25MBps wireless - 20% better

than Linux.
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 14
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Voices of Experience

Jan Gray (from the MS CLR Performance Team):

If you are passionate about the speed of your code, it is imperative
that you consider ... the cache/memory hierarchy as you design
and implement your algorithms and data structures.

Dmitriy Vyukov (developer of Relacy Race Detector):

Cache-lines are the key! Undoubtedly! If you will make even single
error in data layout, you will get 100x slower solution! No jokes!

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 15

Cache Hierarchies

Cache hierarchies (multi-level caches) are common.
E.g., Intel Core i7-9xx processor:

® 32KB L1 I-cache, 32KB L1 D-cache per core
» Shared by 2 HW threads

® 256 KB L2 cache per core
» Holds both instructions and data
» Shared by 2 HW threads

® 8MB L3 cache
» Holds both instructions and data
» Shared by 4 cores (8 HW threads)

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 16
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Core i7-9xx Cache Hierarchy

TOj—>| L1 I-Cache
PN L2 Cache
L1 D-Cache

Core 0

TOj—>| L1 I-Cache
e L2 Cache
L1 D-Cache

Core 1

Main
Memory

TOj—>| L1 I-Cache
e L2 Cache
L1 D-Cache

Core 2

TOk—| L1 I-Cache
P L2 Cache
L1 D-Cache

Core 3

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 17

CPU Cache Characteristics

Caches are small.

® Assume 100MB program at runtime (code + data).
» 8% fits in core-i79xx’s L3 cache.
¢ L3 cache shared by every running process (incl. OS).
» (0.25% fits in each L2 cache.
» (0.03% fits in each L1 cache.

Caches much faster than main memory.

® For Core i7-9xx:
» L1 latency is 4 cycles.
» .2 latency is 11 cycles.
» L3 latency is 39 cycles.

» Main memory latency is 107 cycles. —— —
¢ 27 times slower than L1! T e
* 100% CPU utilization = >99% CPU idle time!

Memary

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 18

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Effective Memory = CPU Cache Memory

From speed perspective, total memory = total cache.

® Core i7-9xx has 8MB fast memory for everything.
» Everything in L1 and L2 caches also in L3 cache.

® Non-cache access can slow things by orders of magnitude.
Small = fast.

® No time/space tradeoff at hardware level.

® Compact, well-localized code that fits in cache is fastest.

® Compact data structures that fit in cache are fastest.

® Data structure traversals touching only cached data are fastest.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 19

Cache Lines

Caches consist of lines, each holding multiple adjacent words.

® On Core i7, cache lines hold 64 bytes.
» 64-byte lines common for Intel/AMD processors.
» 64 bytes = 16 32-bit values, 8 64-bit values, etc.
¢ E.g., 16 32-bit array elements.

Main memory read/written in terms of cache lines.
® Read byte not in cache = read full cache line from main memory.

® Write byte = write full cache line to main memory (eventually).

Cache NSNS N NN NN EEEENEEEE NN NN RN
Line

byte

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 20

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Cache Line Prefetching

Hardware speculatively prefetches cache lines:
® Forward traversal through cache line n = prefetch line n+1

® Reverse traversal through cache line n = prefetch line n-1

450.00 4

400.00

350.00

300.00

+ MSVC RM
= MSVC CM
GCCRM
GCCCM

250.00

200.00

Traversal Time (ms)

150.00

ﬂ Linear growth due to
100,00 / prefetching (I think)
50.00 _..:,. ot
0.00 +=— (' :

Matrix Size (MB)

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 21

Implications

® Locality counts.

» Reads/writes at address A = contents near A already cached.
¢ E.g., on the same cache line.
¢ E.g., on nearby cache line that was prefetched.

® Predictable access patterns count.
» “Predictable” = forward or backwards traversals.

® Linear array traversals very cache-friendly.
» Excellent locality, predictable traversal pattern.
» Linear array search can beat log, n searches of heap-based BSTs.

» log, n binary search of sorted array can beat O(1) searches of
heap-based hash tables.

» Big-Oh wins for large 1, but hardware caching takes early lead.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 22
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Gratuitous “Awwww...” Photo

Source: http://mytempleofnature.blogspot.com/2010_10_01_archive.html

Scott Meyers, Software Development Consultant

© 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 23
Cache Coherency
From core i7’s architecture:
S |Tok—|LLI-Cache .
s X, L2 Cache
3 L1 D-Cache
Main
Memory
+ |Toj—| L1 I-Cache :
s X, L2 Cache
3 L1 D-Cache

® Whether in L1 or L2 makes no difference.
Consider:

® Core 0 writes to A.
® Core 1 reads A.

What value does Core 1 read?

Assume both cores have cached the value at (virtual) address A.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 24

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

CPU Caches and Why You Care

Cache Coherency

Caches a latency-reducing optimization:
® There’s only one virtual memory location with address A.
® It has only one value.

Hardware invalidates Core 1’s cached value when Core 0 writes to A.
®]t then puts the new value in Core 1’s cache(s).

Happens automatically.

" You need not worry about it.
» Provided you synchronize access to shared data...

® But it takes time.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 25

False Sharing

Suppose Core 0 accesses A and Core 1 accesses A+1.
® [ndependent pieces of memory; concurrent access is safe.

® But A and A+1 (probably) map to the same cache line.

» If so, Core 0’s writes to A invalidates A+1’s cache line in Core 1.
* And vice versa.

¢ This is false sharing.
S [Tojc(L1Cache—] D oo
S [t/ D-cache e
/ .
AL A A L Ls Cache -— o0
)] o [TOkcL1ICache|— m
Line from Core 0’s cache g 21 bCache L2 Cache
1
A A fas] J
Line from Core 1’s cache
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 26
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

False Sharing

It explains Herb Sutter’s issue:

int result[P]; /[many elements on 1 cache line
for(intp=0; p<P; ++p)
pool.run([&,p] { /[run P threads concurrently
result[p] = O;

int chunkSize = DIM/P + 1,

int myStart = p * chunkSize;

int myEnd = min(myStart+chunkSize, DIM);

for(int i = myStart; i < myEnd; ++i)

for(intj=0;j < DIM; ++j)
if(matrix[i*DIM +j] % 2!=0)
++result[p]; }); I/l each repeatedly accesses the

/I same array (albeit different
Il elements)

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 27

False Sharing

And his solution:

int result[P]; /I still multiple elements per
/I cache line

for (intp=0;p<P; ++p)
pool.run([&,p] {

int count = 0; /I use local var for counting
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(inti = myStart; i < myEnd; ++i)

for(intj=0;j < DIM; ++j)

if(matrix[i*DIM + j] % 2 1=0)

++count; Il update local var
result[p] = count; }); Il access shared cache line
/I only once
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 28
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Ll
False Sharing
His scalability results are worth repeating;:
Speedup for Example 1 Speedup for Example 2
.I
CD e
2, Q“ ’ﬁ H] !
i . - i [
b 1
o I o
% POTT S % . H'Fi.
g @]
H T
. "
a 10 15 20 n 1 1 n 2
f Threads # Thraads
With False Sharing Without False Sharing
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 29

False Sharing

Problems arise only when all are true:
® Independent values/variables fall on one cache line.
® Different cores concurrently access that line.
® Frequently.
® At least one is a writer.
Types of data susceptible:
® Statically allocated (e.g., globals, statics).
® Heap allocated.

® Automatics and thread-locals (if pointers/references handed out).

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 30

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Voice of Experience

Joe Dutfty at Microsoft:

During our Betal performance milestone in Parallel Extensions,
most of our performance problems came down to stamping out
false sharing in numerous places.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 31

Summary

® Small = fast.
» No time/space tradeoff in the hardware.

® Locality counts.
» Stay in the cache.

® Predictable access patterns count.
» Be prefetch-friendly.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 32
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Guidance

For data:

® Where practical, employ linear array traversals.
» “I don’t know [data structure], but I know an array will beat it.”

® Use as much of a cache line as possible.
» Bruce Dawson’s antipattern (from reviews of video games):

struct Object { /I assume sizeof(Object) = 64
bool isLive; /I possibly a bit field

3

std::vector<Object> objects; /[or an array

for (std::size_ti=0; i< objects.size(); ++i) { // pathological if
if (objectsJi].isLive) /I most objects

doSomething(); /I not alive
}
® Be alert for false sharing in MT systems.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 33
Guidance

For code:

® Fit working set in cache.
» Avoid iteration over heterogeneous sequences with virtual calls.
¢ E.g., sort sequences by type.

® Make “fast paths” branch-free sequences.
» Use up-front conditionals to screen out “slow” cases.

® Inline cautiously:
» The good:
¢ Reduces branching.
¢ Facilitates code-reducing optimizations.

» The bad:
¢ Code duplication reduces effective cache size.

® Take advantage of PGO and WPO.
» Can help automate much of above.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 34
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Relevant topics not really addressed:

® Other cache technology issues:
» Memory banks.
» Associativity.
» Inclusive vs. exclusive content.

® Latency-hiding techniques.
» Hyperthreading.
» Prefetching.

® Cache performance evaluation:
» Why it’s critical.
» Why it’s hard.
» Tools that can help.

Beyond Surface-Scratching

® Memory latency vs. memory bandwidth.

® Cache-oblivious algorithm design.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 35

Matrix traversal redux:

® Matrix size can vary.

® For given size, shape can vary:

Beyond Surface-Scratching

Overall cache behavior can be counterintuitive.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

Slide 36

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

CPU Caches and Why You Care

Columns

Beyond Surface-Scratching

Row major traversal performance unsurprising:

L] L

T i
Fie T T T
B S E i i et
[T T] DA

Nl

A

T T
LT
i g

L AL T]

29

Matrix Size (MB)

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 37

Time

Columns

Beyond Surface-Scratching

Column major a different story:

ZET 15 |
L | e

:?2'-'-'-5'-’3%‘5"“:'3'1" ¥
S e g)

-1:,::;% 1'1'.'1 -

iy 20
g8

Matrix Size (MB)

o
o g ey o
e ot =)
=

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 38

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.

CPU Caches and Why You Care

Beyond Surface-Scratching
A slice through the data:
Columns =200

350.00
300.00 A

250.00 + /\
oy [T]
IAAL AN/N

150.00 2 v .
=TS
200 AN
| fawa/')H{ *
0.00
1 3 & 7 9 11 13 15 47 19 21 23 25 27 29
IMatrix Size (MB)

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 39

Beyond Surface-Scratching

Igor Ostrovsky’s demonstration of cache-associativity effects.
® White = fast.

® Blue = slow.

24 ME A
20 ME +
16 ME 1
12 ME +

Array Length

8 MB

4 ME +

64 128 192 256 320 384 448 512 576
Step

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 40

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Further Information

® What Every Programmer Should Know About Memory, Ulrich
Drepper, 21 November 2007,
http://people.redhat.com/drepper/cpumemory.pdf.

® “CPU cache,” Wikipedia.

® “Gallery of Processor Cache Effects,” Igor Ostrovsky, Igor
Ostrovsky Blogging (Blog), 19 January 2010.

® “Writing Faster Managed Code: Know What Things Cost,” Jan
Gray, MSDN, June 2003.
» Relevant section title is “Of Cache Misses, Page Faults, and
Computer Architecture”
® “Memory is not free (more on Vista performance),” Sergey
Solyanik, 1-800-Magic (Blog), 9 December 2007.
» Experience report about optimizing use of I-cache.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 41

Further Information

® “Eliminate False Sharing,” Herb Sutter, DrDobbs.com, 14 May
2009.

® “False Sharing is no fun,” Joe Dufty, Generalities & Details:
Adventures in the High-tech Underbelly (Blog), 19 October 2009.

® “Exploring High-Performance Algorithms,” Kenny Kerr, MSDN
Magazine, October 2008.
» Impact of cache access pattern in image-processing application.
¢ Order-of-magnitude performance difference.
¢ Overlooks false sharing.

® “07-26-10 — Virtual Functions,” Charles Bloom, cbloom rants
(Blog), 26 July 2010.

» Note ryg’s comment about per-type operation batching.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 42
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

Further Information

® “Profile-Guided Optimizations,” Gary Carleton, Knud
Kirkegaard, and David Sehr, Dr. Dobb’s Journal, May 1998.

» Still a very nice overview.

® “Quick Tips On Using Whole Program Optimization,” Jerry
Goodwin, Visual C++ Team Blog, 24 February 2009.

® Coreinfo v2.0, Mark Russinovich, 21 October 2009.
» Gives info on cores, caches, etc., for Windows platforms.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 43

Licensing Information

Scott Meyers licenses materials for this and other training courses
for commercial or personal use. Details:

® Commercial use: http://aristeia.com/Licensing/licensing.html
® Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

Overview of Effective C++

The New C++ in an

(C++0x) Embedded Environment

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 44
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.

http://www.aristeia.com/

CPU Caches and Why You Care

About Scott Meyers

Scott is a trainer and consultant on the design and
implementation of software systems, typically in
C++. His web site,

http://www.aristeia.com/

provides information on:

® Training and consulting services
® Books, articles, other publications
® Upcoming presentations

® Professional activities blog

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/ Slide 45

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

