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CPU Caches
Two ways to traverse a matrix:

 Each touches exactly the same memory.

Row Major Column Major

Scott
Sticky Note
There are the notes from my presentation at the ACCU 2011 Conference.

Scott
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CPU Caches
Code very similar:

void sumMatrix(const Matrix<int>& m, 
long long& sum, TraversalOrder order)

{
sum = 0;

if (order == RowMajor) {
for (unsigned r = 0; r < m.rows(); ++r) {

for (unsigned c = 0; c < m.columns(); ++c) {
sum += m[r][c];

}
}

} else { 
for (unsigned c = 0; c < m.columns(); ++c) {

for (unsigned r = 0; r < m.rows(); ++r) {
sum += m[r][c];

}
}

}
}
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CPU Caches
Performance isn’t:
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CPU Caches
Traversal order matters. 

Why?
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CPU Caches
Herb Sutter’s scalability issue in counting odd matrix elements.

 Square matrix of side DIM
with memory in array matrix.

 Sequential pseudocode:
int odds = 0;
for( int i = 0; i < DIM; ++i )

for( int j = 0; j < DIM; ++j )
if( matrix[i*DIM + j] % 2 != 0 ) 

++odds; 

DIM

DIM

matrix
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CPU Caches
 Parallel pseudocode, take 1:
int result[P]; 

// Each of P parallel workers processes 1/P-th of the data; 
// the p-th worker records its partial count in result[p]
for (int p = 0; p < P; ++p )

pool.run( [&,p] {
result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min( myStart+chunkSize, DIM );
for( int i = myStart; i < myEnd; ++i )

for( int j = 0; j < DIM; ++j )
if( matrix[i*DIM + j] % 2 != 0 )

++result[p]; } );

pool.join(); // Wait for all tasks to complete

odds = 0; // combine the results
for( int p = 0; p < P; ++p )

odds += result[p]; 

DIM

DIM

matrix
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CPU Caches
Scalability unimpressive:

Faster than 
1 core

Slower than 
1 core
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CPU Caches
 Parallel pseudocode, take 2:
int result[P]; 

for (int p = 0; p < P; ++p )
pool.run( [&,p] {

int count = 0; // instead of result[p]
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min( myStart+chunkSize, DIM );
for( int i = myStart; i < myEnd; ++i )

for( int j = 0; j < DIM; ++j )
if( matrix[i*DIM + j] % 2 != 0 )

++count; // instead of result[p]
result[p] = count; } ); // new statement

... // nothing else changes
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CPU Caches
Scalability now perfect!
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CPU Caches
Thread memory access matters.

Why?
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CPU Caches
Small amounts of unusually fast memory.

 Generally hold contents of recently accessed memory locations.

 Access latency much smaller than for main memory.
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CPU Caches
Three common types:

 Data (D-cache)

 Instruction (I-cache)

 Translation lookaside buffer (TLB)
Caches virtual→real address translations
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Voices of Experience
Sergey Solyanik (from Microsoft):

Linux was routing packets at ~30Mbps [wired], and wireless at 
~20. Windows CE was crawling at barely 12Mbps wired and 
6Mbps wireless. ... 

We found out Windows CE had a LOT more instruction cache 
misses than Linux. ... 

After we changed the routing algorithm to be more cache-local, we 
started doing 35MBps [wired], and 25MBps wireless - 20% better 
than Linux. 
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Voices of Experience
Jan Gray (from the MS CLR Performance Team):

If you are passionate about the speed of your code, it is imperative 
that you consider ... the cache/memory hierarchy as you design 
and implement your algorithms and data structures.

Dmitriy Vyukov (developer of Relacy Race Detector):
Cache-lines are the key! Undoubtedly! If you will make even single 
error in data layout, you will get 100x slower solution! No jokes!
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Cache Hierarchies
Cache hierarchies (multi-level caches) are common.

E.g., Intel Core i7-9xx processor:

 32KB L1 I-cache, 32KB L1 D-cache per core
Shared by 2 HW threads

 256 KB L2 cache per core
Holds both instructions and data
Shared by 2 HW threads

 8MB L3 cache
Holds both instructions and data
Shared by 4 cores (8 HW threads)
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Core i7-9xx Cache Hierarchy
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CPU Cache Characteristics
Caches are small.

 Assume 100MB program at runtime (code + data).
8% fits in core-i79xx’s L3 cache.
L3 cache shared by every running process (incl. OS).

0.25% fits in each L2 cache.
0.03% fits in each L1 cache.

Caches much faster than main memory.

 For Core i7-9xx:
L1 latency is 4 cycles.
L2 latency is 11 cycles.
L3 latency is 39 cycles.
Main memory latency is 107 cycles.
 27 times slower than L1!
 100% CPU utilization ⇒ >99% CPU idle time!
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Effective Memory = CPU Cache Memory
From speed perspective, total memory = total cache.

 Core i7-9xx has 8MB fast memory for everything.
Everything in L1 and L2 caches also in L3 cache.

Non-cache access can slow things by orders of magnitude.

Small ≡ fast.

No time/space tradeoff at hardware level.

 Compact, well-localized code that fits in cache is fastest.

 Compact data structures that fit in cache are fastest.

 Data structure traversals touching only cached data are fastest.
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Cache Lines
Caches consist of lines, each holding multiple adjacent words.

 On Core i7, cache lines hold 64 bytes.
64-byte lines common for Intel/AMD processors.
64 bytes = 16 32-bit values, 8 64-bit values, etc.
E.g., 16 32-bit array elements.

Main memory read/written in terms of cache lines.

 Read byte not in cache ⇒ read full cache line from main memory.

Write byte ⇒ write full cache line to main memory (eventually).

byte

Cache
Line
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Cache Line Prefetching
Hardware speculatively prefetches cache lines:

 Forward traversal through cache line n ⇒ prefetch line n+1

 Reverse traversal through cache line n ⇒ prefetch line n-1

Linear growth due to
prefetching (I think)
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Implications
 Locality counts.
Reads/writes at address A ⇒ contents near A already cached.
E.g., on the same cache line.
E.g., on nearby cache line that was prefetched.

 Predictable access patterns count.
“Predictable” ≅ forward or backwards traversals.

 Linear array traversals very cache-friendly.
Excellent locality, predictable traversal pattern.
Linear array search can beat log2 n searches of heap-based BSTs.
 log2 n binary search of sorted array can beat O(1) searches of 

heap-based hash tables.
Big-Oh wins for large n, but hardware caching takes early lead.
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Gratuitous “Awwww...” Photo

Source: http://mytempleofnature.blogspot.com/2010_10_01_archive.html
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Cache Coherency
From core i7’s architecture:

Assume both cores have cached the value at (virtual) address A. 
Whether in L1 or L2 makes no difference.

Consider:
 Core 0 writes to A.
 Core 1 reads A.

What value does Core 1 read?
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Cache Coherency
Caches a latency-reducing optimization:

 There’s only one virtual memory location with address A.

 It has only one value.

Hardware invalidates Core 1’s cached value when Core 0 writes to A.

 It then puts the new value in Core 1’s cache(s).

Happens automatically.

 You need not worry about it.
Provided you synchronize access to shared data...

 But it takes time.
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False Sharing
Suppose Core 0 accesses A and Core 1 accesses A+1.

 Independent pieces of memory; concurrent access is safe.

 But A and A+1 (probably) map to the same cache line.
If so, Core 0’s writes to A invalidates A+1’s cache line in Core 1.
And vice versa.
This is false sharing.
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False Sharing
It explains Herb Sutter’s issue:

int result[P]; // many elements on 1 cache line

for (int p = 0; p < P; ++p )
pool.run( [&,p] { // run P threads concurrently

result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min( myStart+chunkSize, DIM );
for( int i = myStart; i < myEnd; ++i )

for( int j = 0; j < DIM; ++j )
if( matrix[i*DIM + j] % 2 != 0 )

++result[p]; } ); // each repeatedly accesses the
// same array (albeit different
// elements)
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False Sharing
And his solution:

int result[P]; // still multiple elements per
// cache line

for (int p = 0; p < P; ++p )
pool.run( [&,p] {

int count = 0; // use local var for counting
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min( myStart+chunkSize, DIM );
for( int i = myStart; i < myEnd; ++i )

for( int j = 0; j < DIM; ++j )
if( matrix[i*DIM + j] % 2 != 0 )

++count; // update local var
result[p] = count; } ); // access shared cache line

// only once
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False Sharing
His scalability results are worth repeating:

With False Sharing Without False Sharing
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False Sharing
Problems arise only when all are true:

 Independent values/variables fall on one cache line.

 Different cores concurrently access that line.

 Frequently.

 At least one is a writer.

Types of data susceptible:

 Statically allocated (e.g., globals, statics).

Heap allocated.

 Automatics and thread-locals (if pointers/references handed out).
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Voice of Experience
Joe Duffy at Microsoft:

During our Beta1 performance milestone in Parallel Extensions, 
most of our performance problems came down to stamping out 
false sharing in numerous places.
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Summary
 Small ≡ fast.
No time/space tradeoff in the hardware.

 Locality counts.
Stay in the cache.

 Predictable access patterns count.
Be prefetch-friendly.
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Guidance
For data:

Where practical, employ linear array traversals.
“I don’t know [data structure], but I know an array will beat it.”

 Use as much of a cache line as possible.
Bruce Dawson’s antipattern (from reviews of video games):

struct Object { // assume sizeof(Object) ≥ 64

bool isLive; // possibly a bit field
...

};

std::vector<Object> objects; // or an array

for (std::size_t i = 0; i < objects.size(); ++i) { // pathological if 
if (objects[i].isLive) // most objects

doSomething(); // not alive
}

 Be alert for false sharing in MT systems.
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Guidance
For code:

 Fit working set in cache.
Avoid iteration over heterogeneous sequences with virtual calls.
E.g., sort sequences by type.

Make “fast paths” branch-free sequences.
Use up-front conditionals to screen out “slow” cases.

 Inline cautiously:
The good:
Reduces branching.
 Facilitates code-reducing optimizations.

The bad:
Code duplication reduces effective cache size.

 Take advantage of PGO and WPO.
Can help automate much of above.
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Beyond Surface-Scratching
Relevant topics not really addressed:

 Other cache technology issues:
Memory banks.
Associativity.
Inclusive vs. exclusive content.

 Latency-hiding techniques.
Hyperthreading.
Prefetching.

Memory latency vs. memory bandwidth.

 Cache performance evaluation:
Why it’s critical.
Why it’s hard.
Tools that can help.

 Cache-oblivious algorithm design.
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Beyond Surface-Scratching
Overall cache behavior can be counterintuitive.

Matrix traversal redux:

Matrix size can vary.

 For given size, shape can vary:
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Beyond Surface-Scratching
Row major traversal performance unsurprising:
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Beyond Surface-Scratching
Column major a different story:
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Beyond Surface-Scratching
A slice through the data:
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Beyond Surface-Scratching
Igor Ostrovsky’s demonstration of cache-associativity effects.

White ⇒ fast.

 Blue ⇒ slow.
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Further Information
What Every Programmer Should Know About Memory, Ulrich 

Drepper, 21 November 2007, 
http://people.redhat.com/drepper/cpumemory.pdf.

 “CPU cache,” Wikipedia.

 “Gallery of Processor Cache Effects,” Igor Ostrovsky, Igor 
Ostrovsky Blogging (Blog), 19 January 2010.

 “Writing Faster Managed Code:  Know What Things Cost,” Jan 
Gray, MSDN, June 2003.
Relevant section title is “Of Cache Misses, Page Faults, and 

Computer Architecture”

 “Memory is not free (more on Vista performance),” Sergey 
Solyanik, 1-800-Magic (Blog), 9 December 2007.
Experience report about optimizing use of I-cache.
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Further Information
 “Eliminate False Sharing,” Herb Sutter, DrDobbs.com, 14 May 

2009.

 “False Sharing is no fun,” Joe Duffy, Generalities & Details: 
Adventures in the High-tech Underbelly (Blog), 19 October 2009.

 “Exploring High-Performance Algorithms,” Kenny Kerr, MSDN 
Magazine, October 2008.
Impact of cache access pattern in image-processing application.
Order-of-magnitude performance difference.
Overlooks false sharing.

 “07-26-10 – Virtual Functions,” Charles Bloom, cbloom rants
(Blog), 26 July 2010.
Note ryg’s comment about per-type operation batching.
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Further Information
 “Profile-Guided Optimizations,” Gary Carleton, Knud 

Kirkegaard, and David Sehr, Dr. Dobb’s Journal, May 1998. 
Still a very nice overview.

 “Quick Tips On Using Whole Program Optimization,” Jerry 
Goodwin, Visual C++ Team Blog, 24 February 2009.

 Coreinfo v2.0, Mark Russinovich, 21 October 2009.
Gives info on cores, caches, etc., for Windows platforms.
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Licensing Information
Scott Meyers licenses materials for this and other training courses 
for commercial or personal use.  Details:

 Commercial use: http://aristeia.com/Licensing/licensing.html

 Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:
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About Scott Meyers
Scott is a trainer and consultant on the design and 
implementation of software systems, typically in 
C++. His web site,

http://www.aristeia.com/

provides information on:

 Training and consulting services

 Books, articles, other publications

 Upcoming presentations

 Professional activities blog


