
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Last Revised: 3/21/11

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/974-1887

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 2

CPU Caches
Two ways to traverse a matrix:

 Each touches exactly the same memory.

Row Major Column Major

Scott
Sticky Note
There are the notes from my presentation at the ACCU 2011 Conference.

Scott

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 3

CPU Caches
Code very similar:

void sumMatrix(const Matrix<int>& m,
long long& sum, TraversalOrder order)

{
sum = 0;

if (order == RowMajor) {
for (unsigned r = 0; r < m.rows(); ++r) {

for (unsigned c = 0; c < m.columns(); ++c) {
sum += m[r][c];

}
}

} else {
for (unsigned c = 0; c < m.columns(); ++c) {

for (unsigned r = 0; r < m.rows(); ++r) {
sum += m[r][c];

}
}

}
}

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 4

CPU Caches
Performance isn’t:

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 5

CPU Caches
Traversal order matters.

Why?

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 6

CPU Caches
Herb Sutter’s scalability issue in counting odd matrix elements.

 Square matrix of side DIM
with memory in array matrix.

 Sequential pseudocode:
int odds = 0;
for(int i = 0; i < DIM; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++odds;

DIM

DIM

matrix

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 7

CPU Caches
 Parallel pseudocode, take 1:
int result[P];

// Each of P parallel workers processes 1/P-th of the data;
// the p-th worker records its partial count in result[p]
for (int p = 0; p < P; ++p)

pool.run([&,p] {
result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++result[p]; });

pool.join(); // Wait for all tasks to complete

odds = 0; // combine the results
for(int p = 0; p < P; ++p)

odds += result[p];

DIM

DIM

matrix

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 8

CPU Caches
Scalability unimpressive:

Faster than
1 core

Slower than
1 core

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 9

CPU Caches
 Parallel pseudocode, take 2:
int result[P];

for (int p = 0; p < P; ++p)
pool.run([&,p] {

int count = 0; // instead of result[p]
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++count; // instead of result[p]
result[p] = count; }); // new statement

... // nothing else changes

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 10

CPU Caches
Scalability now perfect!

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 11

CPU Caches
Thread memory access matters.

Why?

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 12

CPU Caches
Small amounts of unusually fast memory.

 Generally hold contents of recently accessed memory locations.

 Access latency much smaller than for main memory.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 13

CPU Caches
Three common types:

 Data (D-cache)

 Instruction (I-cache)

 Translation lookaside buffer (TLB)
Caches virtual→real address translations

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 14

Voices of Experience
Sergey Solyanik (from Microsoft):

Linux was routing packets at ~30Mbps [wired], and wireless at
~20. Windows CE was crawling at barely 12Mbps wired and
6Mbps wireless. ...

We found out Windows CE had a LOT more instruction cache
misses than Linux. ...

After we changed the routing algorithm to be more cache-local, we
started doing 35MBps [wired], and 25MBps wireless - 20% better
than Linux.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 15

Voices of Experience
Jan Gray (from the MS CLR Performance Team):

If you are passionate about the speed of your code, it is imperative
that you consider ... the cache/memory hierarchy as you design
and implement your algorithms and data structures.

Dmitriy Vyukov (developer of Relacy Race Detector):
Cache-lines are the key! Undoubtedly! If you will make even single
error in data layout, you will get 100x slower solution! No jokes!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 16

Cache Hierarchies
Cache hierarchies (multi-level caches) are common.

E.g., Intel Core i7-9xx processor:

 32KB L1 I-cache, 32KB L1 D-cache per core
Shared by 2 HW threads

 256 KB L2 cache per core
Holds both instructions and data
Shared by 2 HW threads

 8MB L3 cache
Holds both instructions and data
Shared by 4 cores (8 HW threads)

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 17

Core i7-9xx Cache Hierarchy

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
2

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
3

Main
Memory

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
0

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 18

CPU Cache Characteristics
Caches are small.

 Assume 100MB program at runtime (code + data).
8% fits in core-i79xx’s L3 cache.
L3 cache shared by every running process (incl. OS).

0.25% fits in each L2 cache.
0.03% fits in each L1 cache.

Caches much faster than main memory.

 For Core i7-9xx:
L1 latency is 4 cycles.
L2 latency is 11 cycles.
L3 latency is 39 cycles.
Main memory latency is 107 cycles.
 27 times slower than L1!
 100% CPU utilization ⇒ >99% CPU idle time!

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 19

Effective Memory = CPU Cache Memory
From speed perspective, total memory = total cache.

 Core i7-9xx has 8MB fast memory for everything.
Everything in L1 and L2 caches also in L3 cache.

Non-cache access can slow things by orders of magnitude.

Small ≡ fast.

No time/space tradeoff at hardware level.

 Compact, well-localized code that fits in cache is fastest.

 Compact data structures that fit in cache are fastest.

 Data structure traversals touching only cached data are fastest.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 20

Cache Lines
Caches consist of lines, each holding multiple adjacent words.

 On Core i7, cache lines hold 64 bytes.
64-byte lines common for Intel/AMD processors.
64 bytes = 16 32-bit values, 8 64-bit values, etc.
E.g., 16 32-bit array elements.

Main memory read/written in terms of cache lines.

 Read byte not in cache ⇒ read full cache line from main memory.

Write byte ⇒ write full cache line to main memory (eventually).

byte

Cache
Line

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 21

Cache Line Prefetching
Hardware speculatively prefetches cache lines:

 Forward traversal through cache line n ⇒ prefetch line n+1

 Reverse traversal through cache line n ⇒ prefetch line n-1

Linear growth due to
prefetching (I think)

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 22

Implications
 Locality counts.
Reads/writes at address A ⇒ contents near A already cached.
E.g., on the same cache line.
E.g., on nearby cache line that was prefetched.

 Predictable access patterns count.
“Predictable” ≅ forward or backwards traversals.

 Linear array traversals very cache-friendly.
Excellent locality, predictable traversal pattern.
Linear array search can beat log2 n searches of heap-based BSTs.
 log2 n binary search of sorted array can beat O(1) searches of

heap-based hash tables.
Big-Oh wins for large n, but hardware caching takes early lead.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 23

Gratuitous “Awwww...” Photo

Source: http://mytempleofnature.blogspot.com/2010_10_01_archive.html

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 24

Cache Coherency
From core i7’s architecture:

Assume both cores have cached the value at (virtual) address A.
Whether in L1 or L2 makes no difference.

Consider:
 Core 0 writes to A.
 Core 1 reads A.

What value does Core 1 read?

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
0

Main
Memory

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 25

Cache Coherency
Caches a latency-reducing optimization:

 There’s only one virtual memory location with address A.

 It has only one value.

Hardware invalidates Core 1’s cached value when Core 0 writes to A.

 It then puts the new value in Core 1’s cache(s).

Happens automatically.

 You need not worry about it.
Provided you synchronize access to shared data...

 But it takes time.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 26

False Sharing
Suppose Core 0 accesses A and Core 1 accesses A+1.

 Independent pieces of memory; concurrent access is safe.

 But A and A+1 (probably) map to the same cache line.
If so, Core 0’s writes to A invalidates A+1’s cache line in Core 1.
And vice versa.
This is false sharing.

A-1 A A+1

Line from Core 0’s cache

A-1 A A+1

Line from Core 1’s cache

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 0

Main
Memory

L3 Cache

T0

T1

T0

T1

L1 I-Cache

L1 D-Cache

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 1

T0

T1

T0

T1

L1 I-Cache

L1 D-Cache

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 0

Main
Memory

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 27

False Sharing
It explains Herb Sutter’s issue:

int result[P]; // many elements on 1 cache line

for (int p = 0; p < P; ++p)
pool.run([&,p] { // run P threads concurrently

result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++result[p]; }); // each repeatedly accesses the
// same array (albeit different
// elements)

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 28

False Sharing
And his solution:

int result[P]; // still multiple elements per
// cache line

for (int p = 0; p < P; ++p)
pool.run([&,p] {

int count = 0; // use local var for counting
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++count; // update local var
result[p] = count; }); // access shared cache line

// only once

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 29

False Sharing
His scalability results are worth repeating:

With False Sharing Without False Sharing

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 30

False Sharing
Problems arise only when all are true:

 Independent values/variables fall on one cache line.

 Different cores concurrently access that line.

 Frequently.

 At least one is a writer.

Types of data susceptible:

 Statically allocated (e.g., globals, statics).

Heap allocated.

 Automatics and thread-locals (if pointers/references handed out).

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 31

Voice of Experience
Joe Duffy at Microsoft:

During our Beta1 performance milestone in Parallel Extensions,
most of our performance problems came down to stamping out
false sharing in numerous places.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 32

Summary
 Small ≡ fast.
No time/space tradeoff in the hardware.

 Locality counts.
Stay in the cache.

 Predictable access patterns count.
Be prefetch-friendly.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 33

Guidance
For data:

Where practical, employ linear array traversals.
“I don’t know [data structure], but I know an array will beat it.”

 Use as much of a cache line as possible.
Bruce Dawson’s antipattern (from reviews of video games):

struct Object { // assume sizeof(Object) ≥ 64

bool isLive; // possibly a bit field
...

};

std::vector<Object> objects; // or an array

for (std::size_t i = 0; i < objects.size(); ++i) { // pathological if
if (objects[i].isLive) // most objects

doSomething(); // not alive
}

 Be alert for false sharing in MT systems.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 34

Guidance
For code:

 Fit working set in cache.
Avoid iteration over heterogeneous sequences with virtual calls.
E.g., sort sequences by type.

Make “fast paths” branch-free sequences.
Use up-front conditionals to screen out “slow” cases.

 Inline cautiously:
The good:
Reduces branching.
 Facilitates code-reducing optimizations.

The bad:
Code duplication reduces effective cache size.

 Take advantage of PGO and WPO.
Can help automate much of above.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 35

Beyond Surface-Scratching
Relevant topics not really addressed:

 Other cache technology issues:
Memory banks.
Associativity.
Inclusive vs. exclusive content.

 Latency-hiding techniques.
Hyperthreading.
Prefetching.

Memory latency vs. memory bandwidth.

 Cache performance evaluation:
Why it’s critical.
Why it’s hard.
Tools that can help.

 Cache-oblivious algorithm design.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 36

Beyond Surface-Scratching
Overall cache behavior can be counterintuitive.

Matrix traversal redux:

Matrix size can vary.

 For given size, shape can vary:

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 37

Beyond Surface-Scratching
Row major traversal performance unsurprising:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 38

Beyond Surface-Scratching
Column major a different story:

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 39

Beyond Surface-Scratching
A slice through the data:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 40

Beyond Surface-Scratching
Igor Ostrovsky’s demonstration of cache-associativity effects.

White ⇒ fast.

 Blue ⇒ slow.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 41

Further Information
What Every Programmer Should Know About Memory, Ulrich

Drepper, 21 November 2007,
http://people.redhat.com/drepper/cpumemory.pdf.

 “CPU cache,” Wikipedia.

 “Gallery of Processor Cache Effects,” Igor Ostrovsky, Igor
Ostrovsky Blogging (Blog), 19 January 2010.

 “Writing Faster Managed Code: Know What Things Cost,” Jan
Gray, MSDN, June 2003.
Relevant section title is “Of Cache Misses, Page Faults, and

Computer Architecture”

 “Memory is not free (more on Vista performance),” Sergey
Solyanik, 1-800-Magic (Blog), 9 December 2007.
Experience report about optimizing use of I-cache.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 42

Further Information
 “Eliminate False Sharing,” Herb Sutter, DrDobbs.com, 14 May

2009.

 “False Sharing is no fun,” Joe Duffy, Generalities & Details:
Adventures in the High-tech Underbelly (Blog), 19 October 2009.

 “Exploring High-Performance Algorithms,” Kenny Kerr, MSDN
Magazine, October 2008.
Impact of cache access pattern in image-processing application.
Order-of-magnitude performance difference.
Overlooks false sharing.

 “07-26-10 – Virtual Functions,” Charles Bloom, cbloom rants
(Blog), 26 July 2010.
Note ryg’s comment about per-type operation batching.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 43

Further Information
 “Profile-Guided Optimizations,” Gary Carleton, Knud

Kirkegaard, and David Sehr, Dr. Dobb’s Journal, May 1998.
Still a very nice overview.

 “Quick Tips On Using Whole Program Optimization,” Jerry
Goodwin, Visual C++ Team Blog, 24 February 2009.

 Coreinfo v2.0, Mark Russinovich, 21 October 2009.
Gives info on cores, caches, etc., for Windows platforms.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 44

Licensing Information
Scott Meyers licenses materials for this and other training courses
for commercial or personal use. Details:

 Commercial use: http://aristeia.com/Licensing/licensing.html

 Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 45

About Scott Meyers
Scott is a trainer and consultant on the design and
implementation of software systems, typically in
C++. His web site,

http://www.aristeia.com/

provides information on:

 Training and consulting services

 Books, articles, other publications

 Upcoming presentations

 Professional activities blog

