Effective C++11 Programming

Effective C++11
Programming

Scott Meyers, Ph.D.

Image: iStockPhoto #6648802 .

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/



Effective C++11 Programming

A derived member function overrides a base class version if:
® Base version is virtual.

® Derived version matches base in:

Declare Overriding Functions override

=» Name

» Parameter types

=» “Adornments,” i.e., const, volatile, & and &&

class Base { class Derived: public Base {

public: public:

virtual virtual // overriding
void f() const; void f() const; // function

; 3
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 2

Per 10.3/2, what I call “adornments” are officially called cv-qualifications and ref-qualifiers.

Scott Meyers, Software Development Consultant

http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.



Effective C++11 Programming

Overrides may omit virtual:
class Base {

public:
virtual void f() const;
¥
class Derivedl: public Base {
public:
virtual void f() const;
}s
class Derived2: public Base {
public:
void f() const;
¥

Overriding Functions

// overrides Base::f

// also overrides Base::f

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 3

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.



Effective C++11 Programming

Overriding Errors
Override-related errors easy to make:
class Base {
public:
virtual void f() const;
¥
class Derived: public Base {
public:
virtual void f(); // missing const;
}s // doesn’t override;
// declares new virtual function
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 4
None of VC10, VC11, and gcc 4.7 issue a warning for this code.
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



Effective C++11 Programming

Overriding Errors

class Base {
public:

virtual void f(long) const;
};
class Derived: public Base {
public:

virtual void f(int) const; // wrong param type;
}; // doesn’t override;

// declares new virtual function
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 5
None of VC10, VC11, and gcc 4.7 issue a warning for this code.
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



Effective C++11 Programming

Overriding Errors

class Base {
public:

void f() const; // missing virtual
};
class Derived: public Base {
public:

void f() const; // doesn’t override;
}; // declares new nonvirtual

// function
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 6
None of VC10, VC11, and gcc 4.7 issue a warning for this code.
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



Effective C++11 Programming

L
override
override-declared functions must override inherited versions:

class Base {
public:

virtual void f() const;
s
class Derivedl: public Base {
public:

void f() const override; // fine
}s
class Derived2: public Base {
public:

virtual void f() override; // error! not an override
}; // (missing const)
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 7

override goes after cv- and ref qualifications.

Declaring an override function virtual is redundant. override functions are always
virtual.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/



Effective C++11 Programming

override

Prevents all earlier errors from compiling:

® Attempt to override non-virtual function:

class Base {
public:
void f() const;

3

class Derived: public Base {

public:
void f() const override; // error!
¥
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 8
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



Effective C++11 Programming

override
® Mismatched parameter types in base and derived classes:
class Base {
public:
virtual void f(long) const;
¥
class Derived: public Base {
public:
virtual void f(int) const override; // error!
¥
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 9
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



Effective C++11 Programming

override

® Mismatched const/volatile declarations in base and derived
classes:

class Base {
public:
virtual void f(int) const;
}s
class Derived: public Base {
public:
virtual void f(int) override; // error!

i

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 10

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/



Effective C++11 Programming

override

Other benefits:

® Helps identify virtuals in derived classes.

class Derived: public Base {

public:
void f1(); // virtual?
void f2() override; // virtual!
¥

® Jdentifies affected derived functions if base signature changes.
» Reduces maintenance-induced errors.

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 11

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



Effective C++11 Programming

override

Covariant return types remain legal:

class Base {
public:
virtual Base& me();
}s
class Derived: public Base {
public:
virtual Derived& me() override;

1

// fine

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 12

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.



Effective C++11 Programming

A Contextual Keyword

override a contextual keyword.
® Special meaning only in member function declarations.

® Remains legal identifier for functions, types, etc.

bool override; // suspect, but allowed

Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 13

The only reason I can think of for having code like this in your system is that it’s legacy,
and you don’t want to change it.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/



Effective C++11 Programming

Fun with “override”

Legal code you don’t want to write:
class override {};

class Base {
public:
virtual ::override override(::override); // override takes
// and returns an

13 // ::override
class Derived: public Base {
public:

::override override(::override) override; // an override
}; // of above :-)
Scott Meyers, Software Development Consultant © 2012 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 14

This code compiles cleanly with both gcc 4.7 and VCI11.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/



Effective C++11 Programming

Declare overriding functions

Guideline

override.

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2012 Scott Meyers, all rights reserved.
Slide 15

Scott Meyers, Software Development Consultant

http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.



