
CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Last Revised: 5/21/10

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/974-1887

CPU Caches and Why You Care

These notes are available at
http://aristeia.com/TalkNotes/PDXCodeCamp2010.pdf

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 2

Why You Care, Take 1
Two ways to traverse a matrix:

Both touch exactly the same memory.

Row Major Column Major

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 3

Why You Care, Take 1
Code very similar:

void sumMatrix(Byte *data, unsigned rows, unsigned columns,
long long& sum, TraversalOrder order)

{
sum = 0;
for (unsigned r = 0; r < rows; ++r) {

for (unsigned c = 0; c < columns; ++c) {
if (order == RowMajor)

sum += data[r*columns + c];
else

sum += data[r + c*rows];
}

}
}

Actual C++ code I tested.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 4

Why You Care, Take 1
With an OO-ish matrix class, even more similar:

void sumMatrix(const Matrix& m,
long long& sum, TraversalOrder order)

{
sum = 0;
for (unsigned r = 0; r < m.rows(); ++r) {

for (unsigned c = 0; c < m.columns(); ++c) {
if (order == RowMajor)

sum += m[r,c];
else

sum += m[c,r];
}

}
}

Code I imagined (i.e., did not test).

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 5

Why You Care, Take 1
Performance isn’t similar:

Results are from tests run on my laptop, which has an Intel Core 2 Duo inside.

The row major traversals scale linearly, I assume, because the hardware prefetching is
keeping up with the traversal. Why the column major curve breaks around 16MB of array
size instead of 4MB (the size of my L2 cache), I don’t know.

All my performance numbers are suspect, because I didn’t examine the object code to
ensure that compilers weren’t doing something unexpected that would throw off my
results.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 6

Why You Care, Take 1
Traversal order matters.

Why?

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 7

Why You Care, Take 2
Herb Sutter’s scalability issue in counting odd matrix elements.

Sequential pseudocode:
int odds = 0;
for(int i = 0; i < DIM; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++odds;

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 8

Why You Care, Take 2
Parallel pseudocode, take 1:

int result[P];
// Each of P parallel workers processes 1/P-th of the data;
// the p-th worker records its partial count in result[p]
for (int p = 0; p < P; ++p)

pool.run([&,p] {
result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++result[p]; });
pool.join(); // Wait for all tasks to complete
odds = 0; // combine the results
for(int p = 0; p < P; ++p)

odds += result[p];

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 9

Why You Care, Take 2
Scalability, er, unimpressive:

Faster than
1 core

Slower than
1 core

These data from a machine with 24 hardware threads. Note that the best speedup (at ~19-
20 hardware threads) is only about 40% above that of a single processor!

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 10

Why You Care, Take 2
Parallel pseudocode, take 2:

int result[P];
for (int p = 0; p < P; ++p)

pool.run([&,p] {
int count = 0; // instead of result[p]
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++count; // instead of result[p]
result[p] = count; }); // new statement

... // nothing else changes

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 11

Why You Care, Take 2
Scalability now perfect!

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 12

Why You Care, Take 2
Thread memory access matters.

Why?

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 13

Voices of Experience
Sergey Solyanik from Microsoft:

Linux was routing packets at ~30Mbps [wired], and wireless at
~20. Windows CE was crawling at barely 12Mbps wired and
6Mbps wireless. ...
We found out Windows CE had a LOT more instruction cache
misses than Linux. ...
After we changed the routing algorithm to be more cache-local, we
started doing 35MBps [wired], and 25MBps wireless - 20% better
than Linux.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 14

Voices of Experience
Jan Gray from the MS CLR Performance Team:

If you are passionate about the speed of your code, it is imperative
that you consider ... the cache/memory hierarchy as you design
and implement your algorithms and data structures.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 15

CPU Caches
Small amounts of unusually fast memory.

Generally hold contents of recently accessed memory locations.

Access latency much smaller than for main memory.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 16

CPU Caches
Three common types:

Data (D-cache)

Instruction (I-cache)

Translation lookaside buffer (TLB)
Caches virtual→real address translations

Beyond mentioning them on this slide, I don’t have anything to say about TLBs in this
presentation.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 17

Cache Hierarchies
Cache hierarchies (multi-level caches) are common.

E.g., Intel Core i7-9xx processor:

32KB L1 I-cache, 32KB L1 D-cache per core
Shared by 2 HW threads

256 KB L2 cache per core
Holds both instructions and data
Shared by 2 HW threads

8MB L3 cache
Holds both instructions and data
Shared by 4 cores (8 HW threads)

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 18

One Core

Nehalem
Architecture

Image source: http://cs466.andersonje.com/public/images/800px-
intel_nehalem_arch.svg.png

The Core i7 is one manifestation of this basic architecture.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 19

Core i7-9xx Cache Hierarchy

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache
and TLBC

or
e

1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache
and TLBC

or
e

2

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache
and TLBC

or
e

0

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache
and TLBC

or
e

3

Main
Memory

The sizes of the cache boxes are not to scale. Each L2 cache is 8 times as big as each L1
cache, and the L3 cache is 8 times as big as each L2 cache.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 20

CPU Cache Characteristics
Caches are small.

Assume 100MB program at runtime (code + data)
8% fits in core-i79xx’s L3 cache.

L3 cache shared by every running process (incl. OS)
0.25% fits in each L2 cache.
0.03% fits in each L1 cache.

Caches much faster than main memory.

For Core i7-9xx:
L1 latency is 4 cycles
L2 latency is 11 cycles
L3 latency is 39 cycles
Main memory latency is 107 cycles

27 times slower than L1!
100% CPU utilization ⇒ >99% CPU idle time!

Source for latency data: http://www.anandtech.com/show/2658/4

The bullet about >99% idle time is misleading, because the core would try to schedule the
second hardware thread to run while waiting on memory latency for the first thread. Also,
it’s unrealistic to assume that every memory reference would yield a main memory access.
Still, there’s something to be said for shock value, hence the bullet :-)

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 21

Effective Memory = CPU Cache Memory
From a performance perspective, total memory = total cache.

A Core i7-9xx has 8MB of fast memory for everything.
Everything in the L1 and L2 caches is also in the L3 cache.

Non-cache access can slow things down by orders of magnitude.

Small ≡ fast.

No time/space tradeoff at hardware level.

Compact, well-localized code that fits in cache is fastest.

Compact data structures that fit in cache are fastest.

Data structure traversals touching only data in cache are fastest.

From http://www.realworldtech.com/page.cfm?ArticleID=RWT040208182719&p=7:
“Nehalem’s 8MB and 16 way associative L3 cache is inclusive of all lower levels of the
cache hierarchy and shared between all four cores. ... Each core contains 64KB of data in
the L1 caches and 256KB in the L2 cache (there may or may not be data that is in both the
L1 and L2 caches). This means that 1-1.25MB of the 8MB L3 cache in Nehalem is filled with
data that is also in other caches.”

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 22

Gratuitous Animal Photos: Flying Fish

Sources: http://i.telegraph.co.uk/telegraph/multimedia/archive/01523/life-flying-
fish_1523792i.jpg and http://www.frogview.com/show6.php?file=10092

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 23

Cache Lines
Caches consist of lines, each holding multiple adjacent words.

On Core i7, cache lines hold 64 bytes.
64-byte lines common for Intel/AMD processors.
64 bytes = 16 32-bit values, 8 64-bit values, etc.

E.g., 16 32-bit array elements.

Main memory read/written in terms of cache lines.

Read byte not in cache ⇒ read full cache line from main memory

Write byte ⇒ write full cache line to main memory (eventually)

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 24

Cache Line Prefetching
Hardware speculatively prefetches cache lines:

Forward traversal through cache line n ⇒ prefetch line n+1

Reverse traversal through cache line n ⇒ prefetch line n-1

Linear growth due to
prefetching (probably)

Successful prefetching decreases the effective latency of main memory.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 25

Implications
Locality counts.

Reads/writes at address A ⇒ contents of addresses near A
already cached.

E.g., on the same cache line.
E.g., on nearby cache line that was prefetched.

Predictable access patterns count.
“Predictable” ≅ forward or backwards traversals.

Linear array traversals very cache-friendly.
Excellent locality, predictable traversal pattern.
Linear array search can beat log2 n searches of heap-based BSTs.
log2 n binary search of sorted array can beat O(1) searches of
heap-based hash tables.
Algorithmic complexity wins for large n, but hardware caching
takes an early lead.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 26

Cache Coherency
From core i7’s architecture:

Assume both cores have cached the value at (virtual) address A.
Whether in L1 or L2 makes no difference.

Consider:
Core 0 writes to A.
Core 1 reads A.

What value does Core 1 read?

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache
and TLBC

or
e

1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache
and TLBC

or
e

0

Main
Memory

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 27

Cache Coherency
Caches a latency-reducing optimization:

There’s only one virtual memory location with address A.

It has only one value.

Hardware invalides Core 1’s cached value when Core 0 writes to A.

It then puts the new value in Core 1’s cache(s).

This happens automatically.

You need not worry about it.
Provided you synchronize your access to shared data...

But it takes time.

There are multiple ways to synchronize access to shared data, e.g., use a mutex, use atomic
machine instructions, use memory barriers. Each of these will ensure that the hardware’s
support for cache coherency will work for you.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 28

False Sharing
Suppose Core 0 accesses A and Core 1 accesses A+1.

Independent pieces of memory; concurrent access is safe.

But A and A+1 (probably) map to the same cache line.
If so, Core 0’s writes to A invalides A+1’s cache line in Core 1.

And vice versa.
This is false sharing.

A-1 A A+1Line from Core 0’s cache

A-1 A A+1Line from Core 1’s cache

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 29

False Sharing
It explains Herb Sutter’s issue:

int result[P]; // many elements on 1 cache line
for (int p = 0; p < P; ++p)

pool.run([&,p] { // run P threads concurrently
result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++result[p]; }); // each repeatedly accesses the
// same array (albeit different
// elements)

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 30

False Sharing
And his solution:

int result[P]; // still multiple elements per
// cache line

for (int p = 0; p < P; ++p)
pool.run([&,p] {

int count = 0; // use local var for counting
int chunkSize = DIM/P + 1;

int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++count; // update local var
result[p] = count; }); // access shared cache line

// only once

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 31

False Sharing
His scalability results are worth repeating:

With False Sharing Without False Sharing

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 32

False Sharing
Problems arise only when all of following are true:

Independent values/variables fall on one cache line.

Different cores concurrently access that line.

Frequently.

At least one is a writer.

Types of data susceptible:

Statically allocated (e.g., globals, statics)

Heap allocated

Automatics and thread-locals (if pointers/references handed out)

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 33

Summary
For both code and data:

Small ≡ fast.
No time/space tradeoff in the hardware.

Locality counts.
Stay in the cache.

Predictable access patterns count.
Be prefetch-friendly.

For data:

Caches love linear array traversals.

Be aware of the possibility of false sharing in MT systems.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 34

Beyond Surface-Scratching
Relevant topics I didn’t address (at least not much):

Other cache technology issues:
Associativity.
Inclusive vs. exclusive content

Latency-hiding techniques.
Hyperthreading
Prefetching

Memory latency vs. memory bandwidth.

Cache performance evaluation:
Why it’s critical.
Why it’s hard.
Tools that can help.

Cache-oblivious algorithm design.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 35

Further Information
What Every Programmer Should Know About Memory, Ulrich
Drepper, 21 November 2007,
http://people.redhat.com/drepper/cpumemory.pdf.

“CPU cache,” Wikipedia.

“Gallery of Processor Cache Effects,” Igor Ostrovsky, Igor
Ostrovsky Blogging (Blog), 19 January 2010.

“Writing Faster Managed Code: Know What Things Cost,”
MSDN, June 2003.

Relevant section title is “Of Cache Misses, Page Faults, and
Computer Architecture”

“Memory is not free (more on Vista performance),” Sergey
Solyanik, 1-800-Magic (Blog), 9 December 2007.

Experience report about optimizing use of I-cache.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 36

Further Information
“Eliminate False Sharing,” Herb Sutter, DrDobbs.com, 14 May
2009.

Coreinfo v2.0, Mark Russinovich, 21 October 2009.
Gives info on cores, caches, etc., for Windows platforms.

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 37

Licensing Information
Scott Meyers licenses materials for this and other training courses
for commercial or personal use. Details:

Commercial use: http://aristeia.com/Licensing/licensing.html

Personal use: http://aristeia.com/Licensing/personalUse.html

Courses available for personal use include:

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 38

About Scott Meyers
Scott is a trainer and consultant on the design and
implementation of software systems, typically in
C++. His web site,

http://www.aristeia.com/

provides information on:

Training and consulting services

Books, articles, other publications

Upcoming presentations

Professional activities blog

