
Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Last Revised: 10/11/10

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/974-1887

The Case for C++ in
Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 2

Beyond Language Choice
Reliably high-quality software based on:

Competent management + reasonable development process.
Genuine concern for quality.
Suitable requirements analysis and change management.
Suitable scheduling/deployment decisions.
Suitable resource provision.

Competent developers.
Architects, designers, programmers.
Understand problem domain + development tools.

Language, compiler, linker.
Unit testing tools, static + dynamic analysis tools.

Apply tools judiciously.
E.g., language features.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 3

Beyond Language Choice
Applicable regardless of language and problem domain.

Bad management/process/developers ⇒ bad software.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 4

Language Usage Constraints
Usage constraints on C and C++ common.

Generally stricter in embedded environments.

Stricter still in safety-critical environments.
Higher cost of failure ⇒ more restrictive constraints.

Language subsetting typically part of constraints.
From MISRA C and C++:
Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.
The comma operator shall not be used.
From MISRA C++:
A class destructor shall not exit with an exception.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 5

Language Subsetting
So which is preferable?

C++98

Approved
Subset

C99

Approved
Subset

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 6

The Case for C++
Constructors and destructors:

Automates initialization/finalization of UDTs.
Can’t forget.
Can’t overlook control paths.

Enables generalized automatic resource management:
RAII (“Resource Acquisition is Initialization”):

Constructor acquires or holds resource.
Destructor releases it.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 7

RAII
Many standard library examples:

std::mutex m; // C++0x
{

std::vector<int> v(1000); // allocate heap array
std::ofstream f("data.txt"); // open file
std::auto_ptr<Widget> p(new Widget); // note heap object
std::lock_guard<std::mutex> lg(m); // lock mutex (C++0x)
... // arbitrarily complex;

// may throw
} // unlock mutex

// delete heap object
// close file
// deallocate heap array

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 8

RAII
Straightforward to customize:

class HoldResourceMgr { // e.g., std::auto_ptr
private: // std::shared_ptr

Resource r;
public:

explicit HoldResourceMgr(const Resource& src)
: r(src) {}
~HoldResourceMgr() { releaseResource(r); }
... // handle copying

};
class AcquireResourceMgr { // e.g., std::vector,
private: // std::ofstream,

Resource r; // std::lock_guard
public:

explicit AcquireResourceMgr(const DataForResource& d)
: r(getResource(d)) {}
~AcquireResourceMgr() { releaseResource(r); }
... // handle copying

};

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 9

Beyond Simple RAII
class Tracer { // log function calls & time spent in them
public:

explicit Tracer(const char *funcName,
std::ostream& stream = std::clog)

: fn(funcName), log(stream)
{

log << "Entering " << fn << '\n';
startTime = std::time(NULL);

}
~Tracer()
{

double ms = std::difftime(std::time(NULL), startTime) * 1000;
log << "Leaving " << fn << '[' << ms << " ms]\n";

}
private:

const char * const fn; // function name
std::time_t startTime;
std::ostream& log;

};

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 10

Beyond Simple RAII
Calls to

void someFunction(parameters)
{

Tracer t(__func__); // start timer, log entry (C++0x)
...

} // stop timer, log exit

produce e.g., (in std::clog):
Entering someFunction
Leaving someFunction[1000 ms]

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 11

The Case for C++
Classes:

Encapsulate members by default.
Private data members accepted as good practice.

Encourages interface/implementation separation.

Encourages programming to interfaces.

Facilitates changing internals w/o breaking client code.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 12

Changing Class Implementations
class Tracer {
private:

const std::string fn; // new
MyCustomTimeClass startTime; // internals
std::ostream& log;

public:
explicit Tracer(const char *funcName, // old

std::ostream& stream = std::clog); // interface
~Tracer();

};
void someFunction(parameters)
{

Tracer t(__func__); // as before
...

}

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 13

The Case for C++
Inheritance and virtual functions:

Manifests cross-type interface commonality.
class Packet { ... };

class PacketAnalyzer {
public:

virtual void analyze(const Packet& p) = 0;
...

};
class PacketLogger:

public PacketAnalyzer { ... };
class PasswordSniffer:

public PacketAnalyzer { ... };
class IntrusionDetector:

public PacketAnalyzer { ... };

PA

PL PS ID

analyze

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 14

Acting Polymorphically
Automates type-specific implementation selection.

bool getPacket(Packet);
std::vector<PacketAnalyzer*> analyzers;
...
Packet p;
while (getPacket(p)) {

for (std::vector<PacketAnalyzer*>::iterator it = analyzers.begin();
it != analyzers.end();
++it) {

(*it)->analyze(p); // perform appropriate analysis
}

}

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 15

Gratuitous Animal Photo

Giant Anteater

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 16

The Case for C++
Operator overloading:

More readable UDT-based code:
std::vector<Widget> v;
Widget w;
...
v[5] = w; // std::vector::operator[], Widget::operator=

Smart pointers an especially nice application:
C++0x’s std::shared_ptr automates reference counting.
p1 = p2; // ++RC for *p1, --RC for *p2
Can combine with RAII on temps returned from operator->:
p->f(); // possibly grab lock, invoke f, release lock;

// or start timer, invoke f, stop timer,
// etc.

Inlined operator() faster than call through function pointer.
Makes C++’s sort faster than C's qsort.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 17

The Case for C++
Templates:

Facilitate type safety.
The obvious kind, e.g., wrapping void* implementations:

template<typename T> // offers push(T), pop(T)
class Stack { ... };
template<typename T> // for when T is pointer type
class Stack<T*> {
public:

void push(T* p) { data.push_back(p); }
T* pop() {

T* p = (T*) data.back();
data.pop_back();
return p;

}
private:

std::vector<void*> data;
};

Clients see type-safe interfaces, object code only for void*s.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 18

Dimensional Analysis
The less obvious kind, i.e., user-defined type relationships.

template <int m, int d, int t> // dimensionally safe
class Units { // wrapper for double

...
private:

double value; // standardized value,
}; // e.g., kg, meters, etc.
typedef Units<0, 1, 0> Distance;
typedef Units<0, 0, 1> Time;
typedef Units<0, 1, -1> Velocity; // distance/time
typedef Units<0, 1, -2> Acceleration; // distance/time2

Distance d;
Time t1, t2;
Velocity v = d/t1; // okay
d = t1; // error!
Acceleration a = v/t2; // okay
a = d/t1; // error!

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 19

Dimensional Analysis
Used to statically dimensionally check, e.g.:

Standard internal unit representation could have prevented 1999
loss of NASA’s Mars Climate Orbiter.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 20

The Case for C++
More expressive standard library:

Containers and algorithms.
Increases maintainability/comprehensibility.
Likely better vetted than home-grown versions.

Often more efficient, e.g., std::remove, std::sort.
Reduces tendency to always use array or list.

Deques, balanced trees, hash tables (C++0x) always on call.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 21

The Case for C++
Better type safety:

Type-safe support for UDTs.
std::list<Widget*> lwp; // lists are type-safe, use same
std::list<Gadget*> lgp; // source code, probably same

// object code
Different library “helpers” for single vs. array-like objects:
std::auto_ptr<int> api; // object pointer
api[4] = 5; // error! operator[] unavailable
*api = 5; // okay
std::shared_ptr<int> spi; // object pointer (C++0x)
spi[4] = 5; // error! still no operator[]
*spi = 5; // okay
std::deque<int> d; // array-like object
d[4] = 5; // okay
d = 5; // error! operator unavailable

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 22

The Case for C++
Wider choice of third-party libraries:

C++ designed to take advantage of C APIs.
Hence can call anything callable from C.

C not designed to call C++ APIs.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 23

Summary
Compared to C, C++ offers:

Automatic UDT initialization and finalization.

RAII-based resource management and derived techniques.

UDT data encapsulation by default.

Ability to express cross-type interface commonality.

Automatic type-appropriate interface implementation selection.

Natural operator syntax for UDTs.

Greater type safety.

More expressive standard library.

Wider selection of third-party libraries.

Both languages requires developer competence in the language.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 24

Further Information
“Abstraction and the C++ Machine Model,” Bjarne Stroustrup,
Keynote address at ICESS04, December 2004.

Overview of strengths of C++ for embedded systems.

“OO Techniques Applied to a Real-time, Embedded, Spaceborne
Application,” Alexander Murray and Mohammad Shababuddin,
Proceedings of OOPSLA 2006.

Describes use of OO and C++ in satellite software.

“Reducing Run-Time Overhead in C++ Programs,” Embedded
Systems Conference, Dan Saks, 1998 and subsequent years.

How to avoid common C++ performance “gotchas”.
2002 paper available at http://www.open-
std.org/jtc1/sc22/wg21/docs/ESC_SF_02_405_&_445_paper.pdf.

“C++ in Embedded Systems: Myth and Reality,” Dominic Herity,
Embedded Systems Programming, February 1998.

Dated (but good) overview of C++ vs. C.

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 25

Further Information
“Embedded Programming with C++,” Stephen Williams, Third
USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), 1997.

Summarizes design/functionality/performance of a C++
runtime library for embedded systems.

“C++ in der Automotive-Software-Entwicklung,” Matthias
Kessler et al., Elektronik automotive, May 2006.

How C++ has been useful in embedded automotive software.

“Applied Template Metaprogramming in SIUNITS: the Library
of Unit-Based Computation,” Walter E. Brown, Second Workshop
on C++ Template Programming, October 2001.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 26

Licensing Information
Scott Meyers licenses materials for this and other training courses
for commercial or personal use. Details:

Commercial use: http://aristeia.com/Licensing/licensing.html

Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

Scott Meyers, Software Development Consultant © 2010 Scott Meyers, all rights reserved.
http://www.aristeia.com/

The Case for C++ in Embedded Systems

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2010 Scott Meyers, all rights reserved.
Slide 27

About Scott Meyers
Scott is a trainer and consultant on the design and
implementation of software systems, typically in
C++. His web site,

http://www.aristeia.com/

provides information on:

Training and consulting services

Books, articles, other publications

Upcoming presentations

Professional activities blog

