
1234567891011121314151617
1819202122232425262728

Item 4 People two cam ioral pr insights The sec describe sults of duce thi “How,” replace rameter Regardl your dis you’d lik bilities: compila
IDE Edi Code ed rameter entity. F
const
auto x
auto y an IDE e
int*. For this what m

 4: Knowwho want tmps. The firroblem in ths into compcond are theed in Items various typ
is type...”), bthey might a universalr (i.e., replacless of the csposal depeke to see thegetting typeation, and ge
itors ditors in IDErs, functionsFor example
int theAn

x = theAns
y = &theAneditor would
s to work, yakes it poss

w how to to see the tyst are the pheir softwarilation that e experimen1-3. Often, te deductionbut sometimwonder, “d reference (ce T&& with camp you faend on the e types youre deductionetting it at ru
Es often shos, etc.) whene, given this
nswer = 42

swer;
nswer; d likely show
your code msible for the

view dedypes that copragmatists. re (i.e., theycan help thntalists. Thethey want ton scenarios (mes they simo the result(see Item 26
const T& inall into (botphase of thr compilers n informatiountime.

ow the typesn you do socode,
2;

w that x’s d
must be in ae IDE to offe

duced typompilers deThey’re typy’re debugghem identifyey’re exploro confirm th(“For this comply want tots of templa6) with an lvn a function th are legitihe software have inferrn as you edi

s of programmething lik

deduced type
a more or leer this kind

pes. educe usualpically motivging), and thy the sourcring the typheir predictiode, I think co answer “wate type dedvalue-referetemplate paimate), the developmeed. We’ll exit your code

m entities (ee hover you

e was int a
ess compilabof informat

ly fall into ovated by a bhey’re lookie of the proe deductionions about tcompilers wwhat if” quesduction chanence-to-conarameter listtools you hnt process plore three e, getting it d

e.g., variableur cursor ov

and y’s was
ble state, betion is a C++

one of behav-ng for oblem. n rules the re-will de-stions. nge if I
st pa-t)?” have at where possi-during

es, pa-ver the

const
ecause + com-

piler running inside the IDE. If that compiler can’t make enough sense of your code 1 to parse it and perform type deduction, it can’t show you what types it deduced. 2
Compiler Diagnostics 3 An effective way to get a compiler to show a type it has deduced is to use that type 4 in a way that leads to compilation problems. The error message reporting the 5 problem is virtually sure to mention the type that’s causing it. 6 Suppose, for example, we’d like to see the types that were deduced for x and y in 7 the previous example. We first declare a class template that we don’t define. Some-8 thing like this does nicely: 9
template<typename T> // declaration only for TD; 10
class TD; // TD == "Type Displayer" 11 Attempts to instantiate this template will elicit an error message, because there’s 12 no template definition to instantiate. To see the types for x and y, just try to instan-13 tiate TD with their types: 14
TD<decltype(x)> xType; // elicit errors containing 15
TD<decltype(y)> yType; // x's and y's types; 16
 // see Item 3 for decltype info 17 I use variable names of the form variableNameType, because they tend to yield 18 quite informative error messages. For the code above, one of my compilers issues 19 diagnositics reading, in part, as follows. (I’ve highlighted the type information 20 we’re looking for.) 21
error: aggregate 'TD<int> xType' has incomplete type and 22
 cannot be defined 23
error: aggregate 'TD<const int *> yType' has incomplete type 24
 and cannot be defined 25 A different compiler provides the same information, but in a different form: 26
error: 'xType' uses undefined class 'TD<int>' 27
error: 'yType' uses undefined class 'TD<const int *>' 28 Formatting differences aside, all the compilers I’ve tested produce error messages 29 with useful type information when this technique is employed. 30

Runtime Output 1 The printf approach to displaying type information (not that I'm recommending 2 you use printf) can’t be employed until runtime, but it offers full control over the 3 formatting of the output. The challenge is to create a textual representation of the 4 type you care about that is suitable for display. “No sweat,” you’re thinking, “it’s 5
typeid and std::type_info::name to the rescue.” In our continuing quest to 6 see the types deduced for x and y, you figure, we can write this: 7
std::cout << typeid(x).name() << '\n'; // display types for 8
std::cout << typeid(y).name() << '\n'; // x and y 9 This approach relies on the fact that invoking typeid on an object such as x or y 10 yields a std::type_info object, and std::type_info has a member function, 11
name, that produces a C-style string (i.e., a const char*) representation of the 12 name of the type. 13 Calls to std::type_info::name are not guaranteed to return anything sensible, 14 but implementations try to be helpful. The level of helpfulness varies. The GNU and 15 Clang compilers report that the type of x is “i”, and the type of y is “PKi”, for ex-16 ample. These results make more sense once you learn that, in output from these 17 compilers, “i” means “int” and “PK” means “pointer to konst const.” (Both com-18 pilers support a tool, c++filt, that decodes such “mangled” types.) Microsoft’s com-19 piler produces less cryptic output: “int” for x and “int const *” for y. 20 Because these results are correct for the types of x and y, you might be tempted to 21 view the type-reporting problem as solved, but let’s not be hasty. Consider a more 22 complex example: 23
template<typename T> // template function to 24
void f(const T& param); // be called 25
std::vector<Widget> createVec(); // factory function 26
const auto vw = createVec(); // init vw w/factory return 27
if (!vw.empty()) { 28
 f(&vw[0]); // call f 29
 … 30
} 31

This code, which involves a user-defined type (Widget), an STL container 1 (std::vector), and an auto variable (vw), is more representative of the situa-2 tions where you might want some visibility into the types your compilers are de-3 ducing. For example, it’d be nice to know what types are inferred for the template 4 type parameter T and the function parameter param in f. 5 Loosing typeid on the problem is straightforward. Just add some code to f to dis-6 play the types you’d like to see: 7
template<typename T> 8
void f(const T& param) 9
{ 10
 using std::cout; 11
 cout << "T = " << typeid(T).name() << '\n'; // show T 12
 cout << "param = " << typeid(param).name() << '\n'; // show 13
 … // param's 14
} // type 15 Executables produced by the GNU and Clang compilers produce this output: 16
T = PK6Widget 17
param = PK6Widget 18 We already know that for these compilers, PK means “pointer to const,” so the 19 only mystery is the number 6. That’s simply the number of characters in the class 20 name that follows (Widget). So these compilers tell us that both T and param are 21 of type const Widget*. 22 Microsoft’s compiler concurs: 23
T = class Widget const * 24
param = class Widget const * 25 Three independent compilers producing the same information suggests that the 26 information is accurate. But look more closely. In the template f, param’s declared 27 type is const T&. That being the case, doesn't it seem odd that T and param have 28 the same type? If T were int, for example, param’s type should be const int&—29 not the same type at all. 30

Sadly, the results of std::type_info::name are not reliable. In this case, for ex-1 ample, the type that all three compilers report for param are incorrect. Further-2 more, they’re essentially required to be incorrect, because the specification for 3
std::type_info::name mandates that the type being processed be treated as if 4 it had been passed to a template function as a by-value parameter. As Item 1 ex-5 plains, that means that if the type is a reference, its reference-ness is ignored, and 6 if the type after reference removal is const, its constness is also ignored. That’s 7 why param’s type—which is const Widget * const &—is reported as const 8
Widget*. First the type’s reference-ness is removed, and then the constness of 9 the result type is eliminated. 10 Equally sadly, the type information displayed by IDE editors is also not reliable—11 or at least not reliably useful. For this same example, one IDE editor I know reports 12
T’s type as (I am not making this up): 13
const 14
std::_Simple_types<std::_Wrap_alloc<std::_Vec_base_types<Widget, 15
std::allocator<Widget> >::_Alloc>::value_type>::value_type * 16 The same IDE editor shows param’s type as: 17
const std::_Simple_types<...>::value_type *const & 18 That’s less intimidating than the type for T, but the “...” in the middle is disturb-19 ing until you realize that it’s the IDE editor’s way of saying “I’m omitting all that 20 stuff that’s part of T’s type.” 21 My understanding is that most of what’s displayed here is typedef cruft and that 22 once you push through the typedefs to get to the underlying type information, 23 you get what you’re looking for, but having to do that work pretty much eliminates 24 any utility the display of the types in the IDE originally promised. With any luck, 25 your IDE editor does a better job on code like this. 26 In my experience, compiler diagnostics are a more dependable source of infor-27 mation about the results of type deduction. Revising the template f’s implementa-28 tion to instantiate the declared-but-not-defined template TD yields this: 29
template<typename T> 30
void f(const T& param) 31

{ 1
 TD<T> TType; // elicit errors containing 2
 TD<decltype(param)> paramType; // T's and param's types 3
 … 4
} 5 Each of GNU’s, Clang’s, and Microsoft’s compilers produce error messages with the 6 correct types for T and param. The exact message contents and formats vary, but 7 as an example, this is what GNU’s compiler issues (after minor reformatting): 8
error: 'TD<const Widget *> TType' has incomplete type 9
error: 'TD<const Widget * const &> paramType' has incomplete 10
 type 11
Beyond typeid 12 If you want accurate runtime information about deduced types, we’ve seen that 13
typeid is not a reliable route to getting it. One way to work around that is to im-14 plement your own mechanism for mapping from a type to its displayable repre-15 sentation. In concept, it’s not difficult: you just use type traits and template met-16 aprogramming (see Item 9) to break a type into its various components (using 17 type traits such as std::is_const, std::is_pointer, 18
std::is_lvalue_reference, etc.), and you create a string representation of the 19 type from textual representations of each of its parts. (You’d still be dependent on 20
typeid and std::type_info::name to generate string representations of the 21 names of user-defined classes, though.) 22 If you’d use such a facility often enough to justify the effort needed to write, debug, 23 document, and maintain it, that’s a reasonable approach. But if you’re willing to 24 live with a little platform-dependent code that’s easy to implement and produces 25 better results than those based on typeid, it’s worth noting that many compilers 26 support a language extension that yields a printable representation of the full sig-27 nature for a function, including, for functions generated from templates, types for 28 both template and function parameters. 29 For example, the GNU and Clang compilers support a construct called 30
__PRETTY_FUNCTION__, and Microsoft’s compiler offers __FUNCSIG__. These 31 constructs represent a variable (for GNU and Clang) or a macro (for Microsoft) 32

whose value is the signature of the containing function. If we reimplement our 1 template f like this, 2
template<typename T> 3
void f(const T& param) 4
{ 5
#if defined(__GNUC__) // For GNU and 6
 std::cout << __PRETTY_FUNCTION__ << '\n'; // Clang 7
#elif defined(_MSC_VER) 8
 std::cout << __FUNCSIG__ << '\n'; // For Microsoft 9
#endif 10
 … 11
} 12 and call f as we did before, 13
std::vector<Widget> createVec(); // factory function 14
const auto vw = createVec(); // init vw w/factory return 15
if (!vw.empty()) { 16
 f(&vw[0]); // call f 17
 … 18
} 19 we get the following result from GNU: 20
void f(const T&) [with T = const Widget*] 21 This tells us that T has been deduced to be const Widget* (the same thing we got 22 via typeid, but without the “PK” encoding and the “6” in front of the class name), 23 but it also tells us that f’s parameter has type const T&. If we expand T in that 24 formulation, we get const Widget * const &. That’s different from what typeid 25 told us, though it’s the same as the type in the error message provoked by use of 26 the declared-but-not-defined TD template. It’s also correct. 27 Use of Microsoft’s __FUNCSIG__ produces this output: 28
void __cdecl f<const classWidget*>(const class Widget *const &) 29 The type inside the angle brackets is the type deduced for T: const Widget*. This, 30 too, is what we got via typeid. But the type inside parentheses is the type de-31 duced for param: const Widget * const&. That’s not what typeid told us, 32

though, again, it’s the same as the (correct) information we’d get during compila-1 tion from use of the TD template. 2 Clang’s function-signature-reporting facility, despite using the same name as 3 GNU’s (__PRETTY_FUNCTION__), is not as forthcoming as GNU’s or Microsoft’s. It 4 yields simply: 5
void f(const Widget *const &) 6 This shows param’s type directly, but it leaves it up to you to deduce that T’s type 7 must have been const Widget* (or to rely on the information provided via 8
typeid). 9 IDE editors, compiler error messages, typeid, and language extensions like 10
__PRETTY_FUNCTION__ and __FUNCSIG__ are merely tools you can use to help 11 you figure out what types your compilers are deducing for you. All can be helpful, 12 but at the end of the day, there’s no substitute for understanding the type deduc-13 tion information in Items 1-3. 14
Things to Remember 15
 Deduced types can often be seen using IDE editors, compiler error messages, 16

typeid, and language extensions such as __PRETTY_FUNCTION__ and 17
__FUNCSIG__. 18

 The results of such tools may be neither helpful nor accurate, so an under-19 standing of C++’s type deduction rules remains essential. 20 21

