
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Item 7Dependinembody einitializat
int x(0

int y =

int z {In many c
int z =For the rsyntax, beThe “confization oplace, evebut for ument, bec
Widget

Widget

w1 = w2Even withhad no wdirectly ied holdinTo addrethey don
tion: a sinrything. I

 : Distingng on your peither an emtion values m
);

 0;

0}; cases, it’s als
 {0}; remainder oecause C++ ufusing mess”ften misleaden though itser-defined tcause differe
w1;

w2 = w1;

; h several initway to exprendicate that ng a particulass the confusn’t cover all ngle initializat’s based on

guish () aperspective, mbarrassmenmay be specif
 // i

 // i

 // io possible to
 // if this Item, usually treats” lobby pointds C++ newb’s not. For btypes, it’s iment function c
 // c

 // n

 // atialization syss a desiredan STL contar set of valusion of multiinitializationation syntax braces, and

and {} whsyntax choict of riches orfied with par
nitializer

nitializer

nitializero use an equa
nitializerI'll generallys it the same s out that thabies into thiuilt-in typesmportant to dcalls are invo
all defaul

ot an assi

n assignmeyntaxes, ther initializatioainer (e.g., ses (e.g., 1, 3, iple initializan scenarios, that can be for that reas

hen creatces for objecr a confusingrentheses, an
r is in pa

r follows

r is in brals sign and b
r uses "="y ignore theas the braceat the use of inking that like int, thdistinguish inolved:
lt constru

ignment; c

ent; callsre were somen. For exam
td::vectorand 5). ation syntaxeC++11 introused anywhon I prefer th

ting objecct initializatig mess. As a n equals sign,
arentheses

"="

races braces togeth
 and bracee braces-pluses-only versiof an equals sigan assignmehe difference nitialization

uctor

calls copy

s copy opere situations wmple, it wasn’
r<int>) sho
es, as well asoduces uniforhere and can he term brac

cts. ion in C++11general rule, or braces:

her:
es s-equals-signon. gn for initialent is takingis academicfrom assign
ctor

rator= where C++98’t possible toould be creat
s the fact tha
rm initializaexpress eve
ced initializa

1 e,

n
-g c, -

8 o t-
t
--
-

tion. “Uniform initialization” is a concept. “Braced initialization” is a syntactic con-1 struct. 2 Braced initialization lets you express the formerly inexpressible. Using braces, 3 specifying the initial contents of a container is easy: 4
std::vector<int> v{1, 3, 5}; // v's initial content is 1, 3, 5 5 Braces can also be used to specify default initialization values for non-static data 6 members. This capability—new to C++11—is shared with the “=” initialization 7 syntax, but not with parentheses: 8
class Widget { 9
 … 10
private: 11
 int x{0}; // fine, x's default value is 0 12
 int y = 0; // also fine 13
 int z(0); // error! 14
}; 15 On the other hand, uncopyable objects (e.g., std::atomics) may be initialized us-16 ing braces or parentheses, but not using "=": 17
std::atomic<int> ai1{0}; // fine 18
std::atomic<int> ai2(0); // fine 19
std::atomic<int> ai3 = 0; // error! 20 Perhaps now you see why braced initialization is called “uniform.” Of C++’s three 21 ways to designate an initializing expression (braces, parentheses, and “=”), only 22 braces can be used everywhere. 23 A novel feature of braced initialization is that it prohibits implicit narrowing con-24
versions. If the value of an expression in a braced initializer might not be expressi-25 ble in the type of the object being initialized, the code won’t compile: 26
double x, y, z; 27
… 28
int sum1{x + y + z}; // error! sum of doubles may 29
 // not be expressible as int 30

Initialization using parentheses and “=” doesn’t check for narrowing conversions, 1 because that could break too much legacy code: 2
int sum2 = x + y + z; // okay (value of expression 3
 // truncated to an int) 4
int sum3(x + y + z); // ditto 5 Another noteworthy characteristic of braced initialization is its immunity to C++’s 6
most vexing parse. A side-effect of C++’s rule that anything that can be parsed as a 7 declaration must be interpreted as one, the most vexing parse most frequently af-8 flicts developers when they want to default-construct an object, but inadvertently 9 end up declaring a function, instead. The root of the problem is that if you want to 10 call a constructor with an argument, you can do it like this, 11
Widget w(10); // call Widget ctor with argument 10 12 but if you try to call a Widget constructor with zero arguments using the analo-13 gous syntax, you declare a function instead of an object: 14
Widget w(); // most vexing parse! declares a function 15
 // named w that returns a Widget! 16 This trap is particularly odious, because an empty set of parentheses sometimes 17
does call a constructor with zero arguments: 18
void f(const Widget& w = Widget()); // w's default value is a 19
 // default-constructed 20
 // Widget 21 Braced initialization eliminates the most vexing parse, yet has no effect on the 22 meaning of initializations that already do what’s desired: 23
Widget w{10}; // as before, calls Widget ctor with arg 10 24
Widget w{}; // now calls Widget ctor with no args 25
void f(const Widget& w = Widget{}); // as before, w's default 26
 // value is a default- 27
 // constructed Widget 28 There’s thus a lot to be said for braced initialization. It’s the syntax that can be 29 used in the widest variety of contexts, it prevents implicit narrowing conversions, 30

and it’s immune to C++ most vexing parse. A trifecta of goodness, right? So why 1 isn’t this Item entitled something like “Use braced initialization syntax”? 2 The drawback to braced initialization is the sometimes-surprising behavior that 3 accompanies it. Such behavior grows out of the unusually tangled relationship 4 among braced initializers, std::initializer_lists, and constructor overload 5 resolution. Their interactions can lead to code that seems like it should do one 6 thing, but actually does another. For example, Item 5 explains that when an auto-7 declared variable has a braced initializer, the type deduced is 8
std::initializer_list, even though other ways of declaring a variable with 9 the same initializer would cause auto to deduce the type of the initializer: 10
auto v1 = -1; // -1's type is int, and so is v1's 11
auto v2(-1); // -1's type is int, and so is v2's 12
auto v3{-1}; // -1's type is still int, but 13
 // v3's type is std::initializer_list<int> 14
auto v4 = {-1}; // -1's type remains int, but 15
 // v4's type is std::initializer_list<int> 16 In constructor calls, parentheses and braces have the same meaning as long as 17
std::initializer_list parameters are not involved: 18
class Widget { 19
public: 20
 Widget(int i, bool b); // ctors not declaring 21
 Widget(int i, double d); // std::initializer_list params 22
 … 23
}; 24
Widget w1(10, true); // calls first ctor 25
Widget w2{10, true}; // also calls first ctor 26
Widget w3(10, 5.0); // calls second ctor 27
Widget w4{10, 5.0}; // also calls second ctor 28 If, however, one or more constructors declares a parameter of type 29
std::initializer_list, calls using the braced initialization syntax strongly 30 prefer the overloads taking std::initializer_lists. Strongly. If there’s any 31
way for compilers to construe a call using a braced initializer to be to a constructor 32

taking a std::initializer_list, compilers will employ that interpretation. If 1 the Widget class above is augmented with a constructor taking a 2
std::initializer_list<long double>, for example, 3
class Widget { 4
public: 5
 Widget(int i, bool b); // as before 6
 Widget(int i, double d); // as before 7
 Widget(std::initializer_list<long double> il); // added 8
 … 9
}; 10
Widgets w2 and w4 will be constructed using the new constructor, even though the 11 type of the std::initializer_list elements (long double) is, compared to 12 the non-std::initializer_list constructors, a worse match for both argu-13 ments! 14
Widget w1(10, true); // uses parens and, as before, 15
 // calls first ctor 16
Widget w2{10, true}; // uses braces, but now calls 17
 // std::init_list ctor (10 and 18
 // true convert to long double) 19
Widget w3(10, 5.0); // uses parens and, as before, 20
 // calls second ctor 21
Widget w4{10, 5.0}; // uses braces, but now calls 22
 // std::init_list ctor (10 and 23
 // 5.0 convert to long double) 24 Compilers’ determination to match braced initializers with constructors taking 25
std::initializer_lists is so strong, it prevails even if the best-match 26
std::initializer_list constructor can’t be called. For example, consider this 27 slightly-revised example: 28
class Widget { 29
public: 30
 Widget(int i, bool b); // as before 31
 Widget(int i, double d); // as before 32
 Widget(std::initializer_list<bool> il); // std::init_list 33
 … // element type is 34
}; // now bool 35

Widget w{10, 5.0}; // error! requires narrowing conversions 1 Here, compilers will ignore the first two constructors (the second of which offers 2 an exact match on both argument types) and try to call the constructor taking a 3
std::initializer_list<bool>. Calling that constructor would require con-4 verting an int (10) and a double (5.0) to bools. Both conversions would be nar-5 rowing (bool can't exactly represent either value), and narrowing conversions are 6 prohibited inside braced initializers, so the call is invalid, and the code is rejected. 7 If there’s no way to convert the types of the arguments in a braced initializer to the 8 type taken by a std::initializer_list, compilers fall back on normal overload 9 resolution. For example, if we replace the std::initializer_list<bool> con-10 structor with one taking a std::initializer_list<std::string>, the non-11
std::initializer_list constructors become candidates again, because there 12 is no way to convert ints and bools to std::strings: 13
class Widget { 14
public: 15
 Widget(int i, bool b); // as before 16
 Widget(int i, double d); // as before 17
 // std::init_list element type is now std::string 18
 Widget(std::initializer_list<std::string> il); 19
 … 20
}; 21
Widget w1(10, true); // uses parens, still calls first ctor 22
Widget w2{10, true}; // uses braces, now calls first ctor 23
Widget w3(10, 5.0); // uses parens, still calls second ctor 24
Widget w4{10, 5.0}; // uses braces, now calls second ctor 25 There are two additional twists to the tale of constructor overload resolution and 26 braced initializers that are worth knowing about: 27
• Empty braces mean no arguments, not an empty std::initializer_list. Speci-28 fying constructor arguments with an empty pair of braces is a request to call 29 the default constructor, not a request to call a constructor with an empty 30

std::initializer_list: 31

class Widget { 1
public: 2
 Widget(); // default ctor 3
 Widget(std::initializer_list<int> il); // std::init_list 4
 … // ctor 5
}; 6
Widget w1; // calls default ctor 7
Widget w2{}; // also calls default ctor 8
 // (doesn't create empty std::init_list) 9
Widget w3(); // most vexing parse! declares a function! 10 If you want to call a std::initializer_list constructor with an empty 11
std::initializer_list, you do it by making the empty braces a construc-12 tor argument—by putting the empty braces inside the parentheses or braces 13 demarcating what you’re passing! 14
Widget w4({}); // calls std::init_list ctor 15
 // with empty list 16
Widget w5{{}}; // ditto 17

• Copy and move constructors are called as usual. Creating an object from 18 another object of the same type always invokes the conventional copying and 19 moving functions: 20
class Widget { 21
public: 22
 Widget(const Widget& rhs); // copy ctor 23
 Widget(Widget&& rhs); // move ctor 24
 Widget(std::initializer_list<int> il); // std::init_list 25
 // ctor 26
 operator int() const; // convert to int 27
 … 28
}; 29
auto w6{w5}; // calls copy ctor, not 30
 // std::init_list <int> ctor, even 31
 // though Widget converts to int 32
auto w7{std::move(w5)}; // ditto, but for move ctor 33
 // (Item 28 has info on std::move) 34 At this point, with seemingly arcane rules about braced initializers, 35

std::initializer_lists, and constructor overloading burbling about in your 36

brain, you may be wondering how much of this information matters in day-to-day 1 programming. More than you might think. That’s because one of the classes direct-2 ly affected is std::vector. std::vector has a non-std::initializer_list 3 constructor that allows you to specify the initial size of the container and a value 4 each of the initial elements should have, but it also has a constructor taking a 5
std::initializer_list that permits you to specify the initial values in the con-6 tainer. If you create a std::vector of a numeric type (e.g., a 7
std::vector<int>) and you pass two arguments to the constructor, whether you 8 enclose those arguments in parentheses or braces makes a tremendous difference: 9
std::vector<int> v1(10, 20); // use non-std::init_list ctor: 10
 // create 10-element std::vector, 11
 // all elements have value of 20 12
std::vector<int> v2{10, 20}; // use std::init_list ctor: 13
 // create 2-element std::vector, 14
 // element values are 10 and 20 15 But let’s step back from std::vector and also from the details of parentheses, 16 braces, and constructor overloading resolution rules. There are two primary take-17 aways from this discussion. First, as a class author, you need to be aware that if 18 your constructor overloads include one or more functions taking a 19
std::initializer_list, client code using braced initialization may see only the 20
std::initializer_list overloads. As a result, it’s best to design your construc-21 tors so that the overload called isn’t affected by whether clients use parentheses or 22 braces. In other words, learn from what is now considered to be an error in the 23 design of the std::vector interface, and design your classes to avoid it. 24 An implication is that if you have a class with no std::initializer_list con-25 structor and you add one, client code using braced initialization may find that calls 26 that used to resolve to non-std::initializer_list constructors now resolve 27 to the new function. Of course, this kind of thing can happen any time you add a 28 new function to a set of overloads: calls that used to resolve to one of the old over-29 loads might start calling the new one. The difference with 30
std::initializer_list constructor overloads is that a 31
std::initializer_list overload doesn’t just compete with other overloads, it 32

overshadows them to the point that the other overloads may not even be consid-1 ered. So add such overloads only with great deliberation. 2 The second lesson is that as a class client, you must choose carefully between pa-3 rentheses and braces when creating objects. Most developers end up choosing one 4 kind of delimiter as a default, using the other only when they have to. Braces-by-5 default folks are attracted by their wide applicability, their prevention of narrow-6 ing conversions, and their avoidance of C++’s most vexing parse. Such folks under-7 stand that in some cases (e.g., creation of a std::vector with a given size and ini-8 tial element value), parentheses are required. In contrast, the go-parentheses-go 9 crowd embraces parentheses as their default argument delimiter. They’re attract-10 ed to its consistency with the C++98 syntactic tradition, its avoidance of the auto-11 deduced-a-std::initializer_list problem, and the knowledge that their ob-12 ject creation calls won’t be inadvertently waylaid by std::initializer_list 13 constructors. They concede that sometimes only braces will do (e.g., when creating 14 a container with particular values). Neither approach is rigorously better than the 15 other. My advice is to pick one and apply it consistently.† 16 If you’re a template author, the parentheses-braces duality for object creation can 17 be especially frustrating, because, in general, it’s not possible to know which form 18 should be used. For example, suppose you’d like to create an object of an arbitrary 19 type from an arbitrary number of arguments. A variadic template makes this con-20 ceptually straightforward: 21
template<typename T, // type of object to create 22
 typename... Args> // types of arguments to use 23
void doSomeWork(const T& obj, Args&&... args) 24
{ 25
 create local T object from args... 26
 … 27
} 28 There are two ways to turn the line of pseudocode into real code (see Item 30 for 29 information about std::forward): 30
 † The examples in this book reveal that I’m a parentheses-by-default person.

T localObject(std::forward<Args>(args)...); // using parens 1
T localObject{std::forward<Args>(args)...}; // using braces 2 So consider this calling code: 3
std::vector<int> v; 4
… 5
doSomeWork(v, 10, 20); 6 If doSomeWork uses parentheses when creating localObject, the result is a 7
std::vector with 10 elements. If doSomeWork uses braces, the result is a 8
std::vector with 2 elements. Which is correct? The author of doSomeWork can’t 9 know. Only the caller can. 10 This is precisely the problem faced by the Standard Library functions 11
std::make_unique and std::make_shared (see Item 23). These functions re-12 solve the problem by internally using parentheses and documenting this decision 13 as part of their interfaces. This is not the only way of dealing with the issue, how-14 ever. Alternative designs permit callers to determine whether parentheses or 15 braces should be used in functions generated from a template. A common compo-16 nent of such designs is tag dispatch, which is described in Item 32.† 17
Things to Remember 18
 Braced initialization is the most widely applicable initialization syntax, it pre-19 vents narrowing conversions, and it’s immune to C++’s most vexing parse. 20
 As detailed in Item 5, braced initializers yield std::initializer_lists for 21

auto-declared objects. 22
 During constructor overload resolution, braced initializers are matched to 23

std::initializer_list parameters, even if other constructors offer seem-24 ingly better matches. 25
 An example of where the choice between parentheses and braces can make a 26 significant difference is creating a std::vector with two arguments. 27 † The treatment in Item 32 is general. For an example of how it can be specifically applied to functions like doSomeWork, see the 5 June 2013 entry of Andrzej's C++ blog, “Intuitive interface — Part I.”

 Choosing between parentheses and braces for object creation inside templates 1 can be challenging. 2 3

