[u=y

O O N o 1A W N

I N
N = O

13
14
15
16
17
18
19
20
21

22
23
24

25
26

27
28

29
30

Item 19: Declare functions noexcept whenever possible.

In C++98, exceptlon specifications were semewhat temperamental beasts. You had
to eaepfessl‘y‘hst—al-} e;(ceptlon types a function might emit (theugh-the -ability to
specify-a-base-class-for-all-derived-class-exception-types helped), and this imposed
constraints on the function’s implementation. If the implementation was changed,
the exception specification might require modification, too, and that not only
opened the door to consistency errors (i.e., an exception specification that no long-
er corresponc}s to the 1mplementat10n) it also meant that callers -of-the-funetion

might be broken- (h& wouldn t- compile] because an exception specification is part

of a function’s interface. For these reasons, C++98 exception specifications were: T iie \\—\(\ s

Syad

largely-ignered. Developers and libraries generally shied away from them, and

some compilers didn’t even fully 1mplement them.

Over Ehezyeam, a consensus emerged that the only meaningful information about a
function’s exception-emitting behavior was whether it had any. Black or white:
either a function might emit an exception (the fype'wvas irmadterial); or the func-
tion guaranteed that callers would never see one. This maybe-or-never dichotomy \

A\

%

\}
- damenhaly o Naee .

forms the basis of C++11’s exception specifications, which supplement C++98's.

(TH¢ C++98-style exception specifications continue to be legal in C++11, butmc:?\);\ 04 <
they're deprecated.) In C++11, noexcept is for functions that guarantee they 1l
never emit an exception. When you write a function that can make that guarantee,

you'll want to use noexcept.

Why? Because it permits compilers to generate better code {i-es-code-that's-smaller

._or-faster-or-both). There are two reasons for this, but we'll begin with how C++98’s

way of saying “this function emits no exceptions” differs from C++1 1's wdy.

Suppose we have a function f that promises callers they’ll never receive an excep-

tion. The C++98 and C++11 ways of expressing that are:

void f(int x) throw(); // C++98 approach: f emits no
// exceptions

void f(int x) noexcept; // C++11 approach: f emits no
// exceptions

w

[==JENolNe BN

12
13
14
15
16

17
18
19
20
21
22
23
24

25

26
27

28
29
30

|}

\ o\

Perhaps surprisingly, neither C++98 nor C++11 permits compilers to reject code in
f that could violate these exception specifications. As a result, the function could

be implemented like this:

void f(int x) noexcept // C++98 version would use "throw()"
if (x >= @) return x * c? - B // if x >= 0 ..
throw std::invalid_argument(// else throw!

"Invalid value for x: " + std::to_string(x)
)3
} \
\

This may look fid:ir:‘ﬁious, but it's perfectly legal C++. Furthermore, looks aren’t
everything. The code here could sifip}# be a way of enforcing the precondition that
x must be non-negative. If f is called with a legitimate value, it doesn't throw. If an
invalid value is passed in, however, the precondition violation causes the function
to have undefined behavior, and this implementation uses that freedom—

undefined behavior means that anything can happen—to throw an exception.

Ihéiéeﬁ{élly, noge the use of std: :to_string to produce a textual representation
of the value of x. Among C++11’s lesser-known features is a set of overloaded
std: :to_string functions that produce std: : string objects from numeric val-
ues. The Standard Library has functions to perform the reverse transformations,
too (i.e, from std: :strings to ints, unsigneds, afféoafs, dolbles) etc.), but the
naming convention for those functiongL albeit folfoWing a consistent pattern, is ra-
ther cryptic: stoi, stol, gtiqd\, etc The C++11 Standard Library also offers

std: :wstring-based versions of all these functions.
But back to the difference in meaning between these two declarations:

void f(int x) throw(); // C++98 approach

void f(int x) noexcept; // C++11 approach

 If f’s implementation permits an exception to escape, the function’s exception

specification is violated. With the C++98 approach, runtime behavior is to unwind.

the call stack to f’s caller, then invoke the unexpected handler function, which will

w

O© 0 N O Ul b

10
11
12
13
14

15
16
17

18
19

20 [

21

22
23

lead to program termination (typically by calling std: :terminate).” With the
C++11 approach, runtime behavior is slightly different: possibly unwind the stack,

then call std: :terminate.

The fact that, with noexcept, the call stack only might be unwound turns out to
make a big difference during code generation. Optimizers are no longer con-
strained to keep the runtime stack in an unwindable state if an exception would
propagate out of the function, nor must they ensure that objects in a noexcept
function are destroyed in the inverse order of construction should an exception
leave the function. The result is greater opportunities for optimization, not only
within the body of a noexcept function, but also at call sites to the function. This
degree of flexibility is present only for noexcept functions. Functions with
“throw()” exception specifications lack it, as do functions with no exception speci-
fication at all. The situation can be summarized this way (where it doesn’t make

any difference what func does):

RetType func(parameters) noexcept; // more optimizable
RetType func(parameters) throw(); // less optimizable
RetType func(parameters); // less optimizable

This alone should provide sufficient motivation to declare functions noexcept

whenever you can. For some functions, however, the case is even stronger. The

move operations are the preeminentexample,

R

> Suppose you have a large investment in a C++98 code base making use of

std: :vectors of Widgets. Natarally, Widgets are added to the std::vector

from time to time, perhaps via push_back:

* By default, the unexpected handler function is std: :unexpected, and, by default, this
calls the terminate handler function, which, by default, is std: :terminate. The unex-
pected and terminate handler—functions may be replaced via calls to
std::set_unexpected ’_’and‘ std::set_terminate,. bgtv_\there are constraints on the
behavior of rep]g;eméné functions, and in the example we'ré\ésrﬁiﬁéﬁng,mggram exe-
cution must""t&minate. std::unexpected and std::terminate, being par;of the

C++98 approach to exception handling, are deprecated in C++11.

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

std: :vector<Widget> vw;

Widget w;
// put w into proper state
// for addition to vw
vw.push_back(w); // add w to vw

Assume this code works fine, and you have no interest in modifying it for C++11.
However, you do want to take advantage of the fact that C++11’s move semantics
can improve the performance of existing code when move-enabled types are in-
volved. You therefore ensure that Widget has move operations, either by writing
them yourself or by seeing to it that the conditions for their automatic generation

are fulfilled (see Item 20).

When a new element is added to a std: : vector via push_back, it's possible that
theiggctbr lacks space for it, i.e., that the’ vectojr’s size is equal to its capacity. When
that hap‘i;ens, the vector allocates a new,]a?ger, chuck of memory to hold its ele-
ments, and it transfers the elements from the existing chunk of memory to the new
one. In C++98, the transfer was accomplished by copying each element from the
old memory into the new memory, then destroying the copies in the old memory.
This approach enabled push_back to offer the strong exception safety guarantee:
if an exception was thrown during the copying of the elements, the state of the vec-
tor remained unchanged, because none of the elements in the original memory
was destroyed until all elements had been successfully copied into the new

memory.

In C++11, a natural optimization would be to replace the copying of vector ele-
ments with moves. Unfortunately, blindly doing this runs the risk of violating
push_back’s exception safety guarantee. If n elements have been moved from old
memory to new and the# an exception is thrown moving element n+1, the
push_back operation can’t run to completion. But the original vector has been

modified: n of its elements have been moved from. Restoring their original state

QAN W\ 10 o g

N

O© 00 N O U1obAh W

10
11
12
13
14
15
16
17
18

19
20

21
22
23
24
25

may not be possible, because attempting to move each object back into the original

memory may itself yield an exception.

This is a serious problem, because the behavior of your C++98 code base could de-
pend on push_back’s strong exception safety guarantee. C++11 cgml%i?fff}?i‘f;,
fore can't silently replace copy operations inside push_back with moves. They
must continue to employ copy operations. Unless, that is, it's known that the move
operations are guaranteed not to emit exceptions. In that case, replacing element
copy operations inside push_back with move operations would be safe, and the

only side effect would be improved performance.

std::vector: :push_back takes advantage of this “move if you can, but copy if
you must” strategy, and it’s not the only function in the Standard Library that does.
Other functions sporting the strong exception safety guarantee in C++98 (e.g.,
std::vector: :reserve, std: :deque: :insert, etc.) behave the same way. All
these functions replace calls to copy operations in C++98 with calls to move opera-
tions in C++11 if (and only if) the move operations are known to never emit excep-
tions. But how does a compiler know if a move operation won'’t produce an excep-

tion? The answer should-be obvious: it checks to see if the operation is declared

1
i>

noexcept.”

And yet, it’s not quite that simple. Popping the hood and peeking inside to see how

things work is instructive, so here we go.

Inside a function like push_back, suppose we want to transfer an objer;t:‘(i.e., copy
or move it, depending on what is appropriate) from one place to én‘bt‘her: Assume
we have an iterator, src, referring to the object to be transferred and a second it-
erator, dest, referring to where it should be transferred. So we’d have a statement

something like this:

* Alternatively, the function could have a C++98-style empty exception specification (i.e.,
“throw()"), but the only reason I can imagine why a move operation—something that
didn’t exist in C++98 and therefore can’t be part of a legacy code base—would employ
throw() instead of noexcept would be to accommodate compilers with incomplete

C++11 support, i.e., compilers where move operations are supported, but noexcept

isn't. Sadlyrsueh-eompilers-do-exist.

¢ vt =
v NV RNE Mf{&‘k\ﬁﬁ‘f}

Ul

O 0 N O

11

12
13
14
15
16

17
18

19
20

*dest = *src; // transfer *src to *dest
// (incorrect version 1)

The statement would be inside a loop, because we’d ultimately need to transfer all

the objects in the container, but understanding how things work for one object is

all we need here.

As the comment indicates, the code is incorrect. The problem is that *src is an
lvalue, so this statement would unconditionally copy *src to *dest. That'd have
been fine in C++98, but in C++11, we want to do a move if we can. The usual way to

move an lvalue is to apply std: :move to it:

// transfer *src to *dest
// (incorrect version 2)

*dest = std::move(*src);

This is also incorrect, because now we're moving *src, regardless of whether it's
move assignment operator is noexcept. As we've discussed, doing that would
prevent push_back from maintaining its strong exception safety guarantee, and
maintaining that guarantee is essential for ensuring that code written under

C++98 continues to function correctly.

The correct code takes advantage of std::move’s poorly publicized cousin,

std: :move_if noexcept:

*dest = std::move_if _noexcept(*src); // transfer *src to *dest
// (correct version)

M A e —

Conceptually, std: :move_if_noexcept causes *src to be moved ifits move as-
signment operator is noexcept, and otherwise it causes *src to be copied. That’s
exactly what we want, and that's why this code is correct. { JUses of
std::move_if noexcept are scattered throughout strongly exception safe func-
tions in the Standard Library, and that's why you have a special incentive to de-

clare your move operations noexcept: it enables their use inside such functions.

The conceptual description of std::move_if_noexcept deviates from its true
behavior in two small ways. First, if std: :move_if_noexcept is invoked on an
object of a move-only type, a move will be performed, even if it might yield an ex-
ception. This is understandable: what else can std: :move_if_noexcept do, giv-
en that the type can’t be copied? Anyway, this behavior can’t break afiy C++98 leg-

| Ao
LEDNE D

1
1
3
4
5

O 0 N O

10
11

12
13
14
15
16
17
18
19
20

21
22
23

24
25
26
27
28
29
30

e 2o d

\\AZKE
acy code, because there’s-no such thing as a move-only type in C++98. Moreover,

.ynurﬁr,hanees-eﬁ-eneountering~a<mQve;only—t—ypewi%h—nen—neexc—ept-meve—opew

tions-are-quite-small—In-fact; -yourchances of encountering -any-non-noexcept—

move operation-are-small:-Most-move-operations-have- -an-implementation-that-
naturally. consist-of statements-where-exeeptions-don’t-arise.—

Second, std::move_if_noexcept, like std::move, doesn’t actually move any-
thing. Rather, it performs a cast to an rvalue that, through overloading resolution,
can cause a move assignment operator or a move constructor to be invoked. It's
these functions that actually move$ values around. For details on the relationship

among std: :move (and std: :move_if_noexcept), casting to rvalues, move op-

erations, and overload resolution, consult ltem 21. -

Accompanying the move operations on the podium for functions that-especially
benefit-from a noexcept d‘eg!a}_*e‘lgigg‘is swap. Thejustification-for-swap’s-presence
is_different from-that forthe move-operations. Firsf being a heavily-used function
(many algorithms rely on swap, as do implementations of many copy assignment

operators), the optimization opportunities that noexcept affords are unusually

o

o

B g v‘ P
i B AL Ly .
sl DRIEN(:g.»\

S ———— 1 ““K‘“\ moe

worthwhile. Second, whether p:iFEEHl.—;} versions of swap in the Standard Library
are noexcept is sometimes dependent on whether user-defined type-specific
swaps are noexcept. For example, the declarations for the Standard Library’s

swaps for arrays and for std: :pair are:

template <class T, size_t N>
void swap(T (&a)[N],
T (&)[N]) noexcept(noexcept(swap(*a, *b)));

template <class T1, class T2>
struct pair {

void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
noexcept(swap(second, p.second)));

};...

These functions are conditionally iﬁééxquﬁ; whether they are noexcept depends . -

on whether the expression inside the outer ~nbexcep*c is. Given two arrays of
Widget, for example, swapping them is noexcept only if swapping an element

from each array is noexcept, i.e. if swap for Widget is noexcept. The author of

1
2
3
4
G 5

6
7

o]

10
11
12
13
14
15
16
17
18

19
20
21

28

29
30

swap/fdr widgetr thus determines whether swapping arrays of Widget is noex-
cept (which, in turn, could determine whether other swaps are noexcept, e.g.,
swap for arrays of arrays of Widget). Similarly, whether swapping two std: :pair

objects containing Widgets is noexcept depends on whether swap for Widgets is

‘noexcept. The fact that swapping higher-level data structures can generally be

noexcept only if swapping their lower-level constituents is noexcept is the rea-

son why you should strive to offer noexcept swap functions.

@E&ﬁféé;(noexcept is part of a function’s interface, §6 you should declare a func-

tion noexcept only if you are willing to commit to a noexcept implementation
over the long term. If you declare a function noexcept and implement it accord-
ingly, then later decide you wish you hadn’t made the noexcept promise, your op-
tions are bleak. You can remove noexcept from the function’s declaration, and in
so doing break arbitrarily amounts of(client code. You can retain the noexcept
declaratlon, but change the implementation such that an exception could actually

escape. In that case, if an exception did escape at runtime, your program would be

terminated. Or you can retam your existing implementation, thus defeatmg what-
ever motivat}‘o‘n you had—ﬁer wantifig to change the implementation in the first

place. None of these options is appealing.

Most functions are exception-neutral: they don’t throw exceptions themselves, but
if a function they call produces one (directly or indirectly), it causes no harm as it
passes through on its way to anleventuglhander in a different function. Exception-

neutral functions aren’t noexcept, because exceptions may pass through them.

.;ﬁ- Some functions, however, are naturally noexcept, and for a few more—notably

the move operations and swap—being noexcept has such a significant payoff, it's
worth implementing them in a noexcept manner if at all possible. When you can
honestly say that a function should never emit exceptions, you should definitely

declare it noexcept.

Things to Remember

———

+ noexcept functions offer more optimization opportunities than non-noexcept

functions.

vy

[y

.

*

C++98 functions offering the strong exception safety guarantee may internally

call std: :move_if noexcept instead of std: :move.

Strive to declare the move operations and swap noexcept.

	nlu1 front
	nlu1 front0001
	nlu1 front0002
	nlu1 front0003
	nlu1 front0004
	nlu1 front0005
	nlu1 front0006
	nlu1 front0007
	nlu1 front0008
	nlu1 front0009

