
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Item 14

In C++98summarimentatioChangingbe depenno help ispecificatexceptionInterest iwork on mation aBlack or wouldn’tspecificattions remfor functiWhether ception-equery a fexception
except i
const. Faan exceptBut thereduce excstand whof saying es callers

 4: Declar
ception8, exception sze the excepn was modig an exceptiondent on thein maintainitions, and clin specificatioin the idea oC++ progreabout a functwhite, either. This maybtions, which main valid, buions that guaa function semitting behfunction’s non safety or efis as importaailure to dection is simplye’s an additioeptions: it phy, it helps tothat a functis they’ll neve

re functio
ns. specificationption types afied, the excon specificatie original excing consistenient code. Mons weren’t wof exception ssed, a constion’s exceptr a function e-or-never dessentially rut they’re dearantee they wshould be so havior of a fu
oexcept statfficiency of thant a piece oclare a functiy poor interfonal incentivpermits compo examine thion won’t emr receive an 

ns noexce

ns were rathea function mception specion could breception specncy among fMost programworth the trospecificationsensus emertion-emittingmight emit dichotomy foreplace C++9eprecated.) Iwon’t emit edeclared is unction is otus, and the rhe calling codof informatioion noexcepface specificave to apply nopilers to gene difference mit exceptionexception. T

ept if the

er temperammight emit, soification migeak client codcification. Cofunction impmmers ultimaouble.  ns remained ged that theg behavior wan exceptionorms the bas8’s. (C++98-n C++11, unexceptions.  a matter of f key intereresults of sude. As such, won as wheth
pt when youation. 
oexcept to fnerate betterbetween thens. Consider he two ways

ey won’t e

mental beastso if the funcght require rde, because cmpilers typiplementationately decided
strong, howe truly meanwas whethern or it guarasis of C++11style exceptinconditional 

interface dest to clientsuch a query cwhether a fuher a membeu know that i
functions thar object code C++98 anda function fs of expressin

emit ex-

s. You had toction’s implerevision, toocallers mighically offeredns, exceptiond that C++98
wever, and asningful inforr it had anyanteed that i1’s exceptionion specifica
noexcept is
sign. The exs. Callers cancan affect thenction is no-er function isit won’t emi
at won’t prode. To under C++11 waysthat promisng that are: 

o -o. t d n 8 
s -y. t n -s 
-n e 
-s t 
--s -



int f(int x) throw();     // no exceptions from f: C++98 style 1 
int f(int x) noexcept;    // no exceptions from f: C++11 style 2 If, at run time, an exception leaves f, f’s exception specification is violated. With 3 the C++98 exception specification, the call stack is unwound to f’s caller, and, after 4 some actions not relevant here, program execution is terminated. With the C++11 5 exception specification, runtime behavior is slightly different: the stack is only pos-6 
sibly unwound before program execution is terminated. 7 The difference between unwinding the call stack and possibly unwinding it has a 8 surprisingly large impact on code generation. In a noexcept function, optimizers 9 need not keep the runtime stack in an unwindable state if an exception would 10 propagate out of the function, nor must they ensure that objects in a noexcept 11 function are destroyed in the inverse order of construction should an exception 12 leave the function. Functions with “throw()” exception specifications lack such 13 optimization flexibility, as do functions with no exception specification at all. The 14 situation can be summarized this way: 15 
RetType function(params) noexcept;     // most optimizable 16 
RetType function(params) throw();      // less optimizable 17 
RetType function(params);              // less optimizable 18 This alone is sufficient reason to declare functions noexcept whenever you know 19 they won’t produce exceptions.  20 For some functions, the case is even stronger. The move operations are the 21 preeminent example. Suppose you have a C++98 code base making use of a 22 
std::vector<Widget>. Widgets are added to the std::vector from time to 23 time via push_back: 24 
std::vector<Widget> vw; 25 
… 26 
Widget w; 27 
…                        // work with w 28 
vw.push_back(w);         // add w to vw 29 



… 1 Assume this code works fine, and you have no interest in modifying it for C++11. 2 However, you do want to take advantage of the fact that C++11’s move semantics 3 can improve the performance of legacy code when move-enabled types are in-4 volved. You therefore ensure that Widget has move operations, either by writing 5 them yourself or by seeing to it that the conditions for their automatic generation 6 are fulfilled (see Item 17).  7 When a new element is added to a std::vector, it’s possible that the 8 
std::vector lacks space for it, i.e., that the std::vector’s size is equal to its ca-9 pacity. When that happens, the std::vector allocates a new, larger, chunk of 10 memory to hold its elements, and it transfers the elements from the existing chunk 11 of memory to the new one. In C++98, the transfer was accomplished by copying 12 each element from the old memory to the new memory, then destroying the ob-13 jects in the old memory. This approach enabled push_back to offer the strong ex-14 ception safety guarantee: if an exception was thrown during the copying of the el-15 ements, the state of the std::vector remained unchanged, because none of the 16 elements in the old memory were destroyed until all elements had been success-17 fully copied into the new memory. 18 In C++11, a natural optimization would be to replace the copying of std::vector 19 elements with moves. Unfortunately, doing this runs the risk of violating 20 
push_back’s exception safety guarantee. If n elements have been moved from the 21 old memory and an exception is thrown moving element n+1, the push_back op-22 eration can’t run to completion. But the original std::vector has been modified: 23 
n of its elements have been moved from. Restoring their original state may not be 24 possible, because attempting to move each object back into the original memory 25 may itself yield an exception. 26 This is a serious problem, because the behavior of legacy code could depend on 27 
push_back’s strong exception safety guarantee. Therefore, C++11 implementa-28 tions can’t silently replace copy operations inside push_back with moves unless 29 it’s known that the move operations won’t emit exceptions. In that case, having 30 



moves replace copies would be safe, and the only side effect would be improved 1 performance.  2 
std::vector::push_back takes advantage of this “move if you can, but copy if 3 you must” strategy, and it’s not the only function in the Standard Library that does. 4 Other functions sporting the strong exception safety guarantee in C++98 (e.g., 5 
std::vector::reserve, std::deque::insert, etc.) behave the same way. All 6 these functions replace calls to copy operations in C++98 with calls to move opera-7 tions in C++11 only if the move operations are known to not emit exceptions. But 8 how can a function know if a move operation won’t produce an exception? The an-9 swer is obvious: it checks to see if the operation is declared noexcept.†  10 
swap functions comprise another case where noexcept is particularly desirable.  11 
swap is a key component of many STL algorithm implementations, and it’s com-12 monly employed in copy assignment operators, too. Its widespread use renders 13 the optimizations that noexcept affords especially worthwhile. Interestingly, 14 whether swaps in the Standard Library are noexcept is sometimes dependent on 15 whether user-defined swaps are noexcept. For example, the declarations for the 16 Standard Library’s swaps for arrays and std::pair are: 17 
template <class T, size_t N> 18 
void swap(T (&a)[N],                                    // see 19 
          T (&b)[N]) noexcept(noexcept(swap(*a, *b)));  // below 20 
template <class T1, class T2> 21 
struct pair { 22 
  … 23 
  void swap(pair& p) noexcept(noexcept(swap(first, p.first)) && 24 
                              noexcept(swap(second, p.second))); 25 
  … 26 
}; 27 
                                                             
† The checking is typically rather roundabout. Functions like std::vector::push_back call std::move_if_noexcept, a variation of std::move that conditionally casts to an rvalue (see Item 23), depending on whether the type’s move constructor is noexcept. In turn, std::move_if_noexcept consults std::is_nothrow_move_constructible, and the value of this type trait (see Item 9) is set by compilers, based on whether the move con-structor has a noexcept (or throw()) designation. 



These functions are conditionally noexcept: whether they are noexcept depends 1 on whether the expressions inside the noexcept clauses are noexcept. Given two 2 arrays of Widget, for example, swapping them is noexcept only if swapping indi-3 vidual elements in the arrays is noexcept, i.e., if swap for Widget is noexcept. 4 The author of Widget’s swap thus determines whether swapping arrays of Widget 5 is noexcept. That, in turn, determines whether other swaps, such as the one for 6 arrays of arrays of Widget, are noexcept. Similarly, whether swapping two 7 
std::pair objects containing Widgets is noexcept depends on whether swap for 8 
Widgets is noexcept. The fact that swapping higher-level data structures can 9 generally be noexcept only if swapping their lower-level constituents is noex-10 
cept should motivate you to offer noexcept swap functions whenever you can. 11 By now, I hope you’re excited about the optimization opportunities that noexcept 12 affords. Alas, I must temper your enthusiasm. Optimization is important, but cor-13 rectness is more important. I noted at the beginning of this Item that noexcept is 14 part of a function’s interface, so you should declare a function noexcept only if 15 you are willing to commit to a noexcept implementation over the long term. If 16 you declare a function noexcept and later regret that decision, your options are 17 bleak. You can remove noexcept from the function’s declaration (i.e., change its 18 interface), thus running the risk of breaking client code. You can change the im-19 plementation such that an exception could escape, yet keep the original (now in-20 correct) exception specification. If you do that, your program will be terminated if 21 an exception tries to leave the function. Or you can resign yourself to your existing 22 implementation, abandoning whatever kindled your desire to change the imple-23 mentation in the first place. None of these options is appealing. 24 The fact of the matter is that most functions are exception-neutral. Such functions 25 throw no exceptions themselves, but functions they call might emit one. When that 26 happens, the exception-neutral function allows the emitted exception to pass 27 through on its way to a handler further up the call chain. Exception-neutral func-28 tions are never noexcept, because they may emit such “just passing through” ex-29 ceptions. Most functions, therefore, quite properly lack the noexcept designation. 30 



Some functions, however, have natural implementations that emit no exceptions, 1 and for a few more—notably the move operations and swap—being noexcept can 2 have such a significant payoff, it’s worth implementing them in a noexcept man-3 ner if at all possible.† When you can honestly say that a function should never emit 4 exceptions, you should definitely declare it noexcept.  5 Please note that I said some functions have natural noexcept implementations. 6 Twisting a function’s implementation to permit a noexcept declaration is the tail 7 wagging the dog. Is putting the cart before the horse. Is not seeing the forest for 8 the trees. Is…choose your favorite metaphor. If a straightforward function imple-9 mentation might yield exceptions (e.g., by invoking a function that might throw), 10 the hoops you’ll jump through to hide that from callers (e.g., catching all excep-11 tions and replacing them with status codes or special return values) will not only 12 complicate your function’s implementation, it will typically complicate code at call 13 sites, too. For example, callers may have to check for status codes or special return 14 values. The runtime cost of those complications (e.g., extra branches, larger func-15 tions that put more pressure on instruction caches, etc.) could exceed any speedup 16 you’d hope to achieve via noexcept, plus you’d be saddled with source code that’s 17 more difficult to comprehend and maintain. That’d be poor software engineering. 18 For some functions, being noexcept is so important, they’re that way by default. 19 In C++98, it was considered bad style to permit the memory deallocation functions 20 (i.e., operator delete and operator delete[]) and destructors to emit excep-21 tions, and in C++11, this style rule has been all but upgraded to a language rule. By 22 default, all memory deallocation functions and all destructors—both user-defined 23 and compiler-generated—are implicitly noexcept. There’s thus no need to declare 24 them noexcept. (Doing so doesn’t hurt anything, it’s just unconventional.) The 25                                                              
† The interface specifications for move operations on containers in the Standard Library lack noexcept. However, implementers are permitted to strengthen exception specifica-tions for Standard Library functions, and, in practice, it is common for at least some con-tainer move operations to be declared noexcept. That practice exemplifies this Item’s ad-vice. Having found that it’s possible to write container move operations such that excep-tions aren’t thrown, implementers often declare the operations noexcept, even though the Standard does not require them to do so. 



only time a destructor is not implicitly noexcept is when a data member of the 1 class (including inherited members and those contained inside other data mem-2 bers) is of a type that expressly states that its destructor may emit exceptions (e.g., 3 declares it “noexcept(false)”). Such destructors are uncommon. There are none 4 in the Standard Library, and if the destructor for an object being used by the 5 Standard Library (e.g., because it’s in a container or was passed to an algorithm) 6 emits an exception, the behavior of the program is undefined.  7 It’s worth noting that some library interface designers distinguish functions with 8 
wide contracts from those with narrow contracts. A function with a wide contract 9 has no preconditions. Such a function may be called regardless of the state of the 10 program, and it imposes no constraints on the arguments that callers pass it.† 11 Functions with wide contracts never exhibit undefined behavior.  12 Functions without wide contracts have narrow contracts. For such functions, if a 13 precondition is violated, results are undefined.  14 If you’re writing a function with a wide contract and you know it won’t emit excep-15 tions, following the advice of this Item and declaring it noexcept is easy. For func-16 tions with narrow contracts, the situation is trickier. For example, suppose you’re 17 writing a function f taking a std::string parameter, and suppose f’s natural 18 implementation never yields an exception. That suggests that f should be declared 19 
noexcept.  20 Now suppose that f has a precondition: the length of its std::string parameter 21 doesn’t exceed 32 characters. If f were to be called with a std::string whose 22 length is greater than 32, behavior would be undefined, because a precondition 23 violation by definition results in undefined behavior. f is under no obligation to 24 check this precondition, because functions may assume that their preconditions 25                                                              
† “Regardless of the state of the program” and “no constraints” doesn’t legitimize programs whose behavior is already undefined. For example, std::vector::size has a wide con-tract, but that doesn’t require that it behave reasonably if you invoke it on a random chunk of memory that you’ve cast to a std::vector. The result of the cast is undefined, so there are no behavioral guarantees beyond that point. 



are satisfied. (Callers are responsible for ensuring that such assumptions are val-1 id.) Even with a precondition, then, declaring f noexcept seems appropriate: 2 
void f(const std::string& s) noexcept;    // precondition: 3 
                                          // s.length() <= 32 4 But suppose that f’s implementer chooses to check for precondition violations, at 5 least in debug builds. Checking isn’t required, but it’s also not forbidden, and 6 checking the precondition could be useful during system testing. Debugging an ex-7 ception that’s been thrown is generally easier than trying to track down the cause 8 of undefined behavior. But how should a precondition violation be reported such 9 that a test harness could detect it? A straightforward approach would be to throw 10 a “precondition was violated” exception, but if f is declared noexcept, that would 11 be impossible; throwing an exception would lead to program termination. For this 12 reason, library designers who distinguish wide from narrow contracts generally 13 reserve noexcept for functions with wide contracts. 14 As a final point, let me elaborate on my earlier observation that compilers typically 15 offer no help in identifying inconsistencies between function implementations and 16 their exception specifications. Consider this code, which is perfectly legal: 17 
void setup();           // functions defined elsewhere 18 
void cleanup(); 19 
void doWork() noexcept 20 
{ 21 
  setup();              // set up work to be done 22 
  …                     // do the actual work 23 
  cleanup();            // perform cleanup actions 24 
} 25 Here, doWork is declared noexcept, even though it calls the non-noexcept func-26 tions setup and cleanup. This seems contradictory, but it could be that setup 27 and cleanup document that they never emit exceptions, even though they’re not 28 declared that way. There could be good reasons for their non-noexcept declara-29 tions. For example, they might be part of a library written in C.  (Even functions 30 from the C Standard Library that have been moved into the std namespace lack 31 exception specifications, e.g., std::strlen isn’t declared noexcept.) Or they 32 



could be part of a C++98 library that decided not to use C++98 exception specifica-1 tions and hasn’t yet been revised for C++11. 2 Because there are legitimate reasons for noexcept functions to rely on code lack-3 ing the noexcept guarantee, C++ permits such code, and compilers generally don’t 4 issue warnings about it.  5 
Things to Remember 6 
 noexcept is part of a function’s interface, and that means that callers may de-7 pend on it. 8 
 noexcept functions are more optimizable than non-noexcept functions.  9 
 noexcept is particularly valuable for the move operations, swap, memory 10 deallocation functions, and destructors. 11 
 Most functions are exception-neutral rather than noexcept. 12  13 


