=

O© 0 N O 1 »H» W N

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24

25
26
27
28
29

30

Item 16: Declare functions noexcept whenever possible.

In C++98, exception specifications were rather temperamental creatures. You had
to summarize the exception types a function might emit, so if the function’s im-
plementation was modified, the exception specification might need revision, too.
Changing an exception specification could break client code, because callers might
be dependent on the original exception specification. Compilers typically offered
no help in maintaining consistency among function implementations, exception
specifications, and client code. Most programmers ultimately decided that C++98

exception specifications weren’t worth the trouble.

Interest in the idea of exception specifications remained strong, however, and as
work on C++ progressed, a consensus emerged that the truly meaningful infor-
mation about a function’s exception-emitting behavior was whether it had any.
Black or white, either a function might emit an exception or it guaranteed that it
wouldn’t. This maybe-or-never dichotomy forms the basis of C++11’s exception
specifications, which essentially replace C++98’s. (C++98-style exception specifica-
tions remain valid, but they're deprecated.) In C++11, noexcept is for functions

that guarantee they won'’t emit an exception.

Whether a function should be so declared is fundamentally a matter of interface
design. The exception-emitting behavior of a function is of key interest to clients.
Callers can query a function’s noexcept status, and the results of such a query can
affect the exception safety or efficiency of the calling code. As such, whether a func-
tion is noexcept is as important a piece of information as whether a member func-
tion is const. Failure to declare a function noexcept when you know that it will

never emit an exception is simply poor interface specification.

But there’s an additional incentive to apply noexcept to functions that won'’t pro-
duce exceptions: it permits compilers to generate better object code. To under-
stand why, it helps to examine the difference between the C++98 and C++11 ways
of saying that a function won’t emit exceptions. Consider a function f that promis-

es callers they’ll never receive an exception. The two ways of expressing that are:

int f(int x) throw(); // no exceptions from f: C++98 style

N U1 A W N

~

10
11
12
13
14
15
16

17
18
19

20
21

22
23
24
25

26
27
28
29
30

int f(int x) noexcept; // no exceptions from f: C++11 style

If, at runtime, an exception leaves f, f’s exception specification is violated. With
the C++98 approach, the call stack is unwound to f’s caller, and, after some actions
not relevant here, program execution is terminated. With the C++11 approach,
runtime behavior is a bit different: the stack is only possibly unwound before pro-

gram execution is terminated.

The difference between unwinding the call stack and possibly unwinding it has a
surprisingly large impact on code generation. In a noexcept function, optimizers
need not keep the runtime stack in an unwindable state if an exception would
propagate out of the function, nor must they ensure that objects in a noexcept
function are destroyed in the inverse order of construction should an exception
leave the function. The result is more opportunities for optimization, not only
within the body of a noexcept function, but also at sites where the function is
called. Such flexibility is present only for noexcept functions. Functions with
“throw()” exception specifications lack it, as do functions with no exception speci-

fication at all. The situation can be summarized this way:

RetType function(params) noexcept; // most optimizable
RetType function(params) throw(); // less optimizable
RetType function(params); // less optimizable

This alone should provide sufficient motivation to declare functions noexcept

whenever you can.

For some functions, the case is even stronger. The move operations are the
preeminent example. Suppose you have a C++98 code base making use of
std: :vectors of Widgets. Widgets are added to the std: :vectors from time to

time, perhaps via push_back:

std::vector<Widget> vw;

Widget w;
// work with w

vw.push_back(w); // add w to vw

N O oA W N

(o0}

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

27
28
29
30
31

Assume this code works fine, and you have no interest in modifying it for C++11.
However, you do want to take advantage of the fact that C++11’s move semantics
can improve the performance of legacy code when move-enabled types are in-
volved. You therefore ensure that Widget has move operations, either by writing
them yourself or by seeing to it that the conditions for their automatic generation

are fulfilled (see Item 19).

When a new element is added to a std: : vector via push_back, it’s possible that
the std: :vector lacks space for it, i.e., that the std: : vector’s size is equal to its
capacity. When that happens, the std: :vector allocates a new, larger, chunk of
memory to hold its elements, and it transfers the elements from the existing chunk
of memory to the new one. In C++98, the transfer was accomplished by copying
each element from the old memory to the new memory, then destroying the origi-
nals in the old memory. This approach enabled push_back to offer the strong ex-
ception safety guarantee: if an exception was thrown during the copying of the el-
ements, the state of the std: :vector remained unchanged, because none of the
elements in the original memory was destroyed until all elements had been suc-

cessfully copied into the new memory.

In C++11, a natural optimization would be to replace the copying of std: :vector
elements with moves. Unfortunately, doing this runs the risk of violating
push_back’s exception safety guarantee. If n elements have been moved from the
old memory and an exception is thrown moving element n+1, the push_back op-
eration can’t run to completion. But the original std: : vector has been modified:
n of its elements have been moved from. Restoring their original state may not be
possible, because attempting to move each object back into the original memory

may itself yield an exception.

This is a serious problem, because the behavior of legacy code could depend on
push_back’s strong exception safety guarantee. Therefore, C++11 implementa-
tions can’t silently replace copy operations inside push_back with moves. They
must continue to employ copy operations. Unless, that is, it's known that the move

operations are guaranteed not to emit exceptions. In that case, replacing element

N

O© 00 N O U1 B w

10
11

12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27
28

copy operations inside push_back with move operations would be safe, and the

only side effect would be improved performance.

std::vector: :push_back takes advantage of this “move if you can, but copy if
you must” strategy, and it’s not the only function in the Standard Library that does.
Other functions sporting the strong exception safety guarantee in C++98 (e.g,
std::vector::reserve, std: :deque::insert, etc.) behave the same way. All
these functions replace calls to copy operations in C++98 with calls to move opera-
tions in C++11 if (and only if) the move operations are known to not emit excep-
tions. But how can a function know if a move operation won'’t produce an excep-
tion? The answer is obvious: it checks to see if the operation is declared noex-

cept.”

swap functions comprise another case where noexcept is particularly desirable.
swap is a key component of many STL algorithm implementations, and it's com-
monly employed in copy assignment operators, too. Its widespread use renders
the optimizations that noexcept affords especially worthwhile. Furthermore,
whether swaps in the Standard Library are noexcept is sometimes dependent on
whether user-defined swaps are noexcept. For example, the declarations for the

Standard Library’s swaps for arrays and for std: : pair are:

template <class T, size_t N>
void swap(T (&a)[N],
T (&)[N]) noexcept(noexcept(swap(*a, *b)));

template <class T1, class T2>
struct pair {

void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
noexcept(swap(second, p.second)));

};...

* The checking is typically rather roundabout. Functions like std: :vector: :push_back
call std: :move_if_noexcept, a variation of std: :move that conditionally casts to an
rvalue (see Item 28), depending on whether the type’s move constructor is noexcept. In
turn, std: :move_if_noexcept calls std: :is_nothrow_move_constructible, and the
value of this type trait is set by compilers, based on whether the move constructor has a

noexcept (or throw()) designation.

O© 0 N O U1 A W N

=
—~ o

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

of Widget, for example, swapping them is noexcept only if swapping individual
elements from the arrays is noexcept, i.e,, if swap for Widget is noexcept. The
author of Widget’s swap thus determines whether swapping arrays of Widget is
noexcept. That, in turn, determines whether other swaps, such as the one for ar-
rays of arrays of Widget, are noexcept. Similarly, whether swapping two
std: :pair objects containing Widgets is noexcept depends on whether swap for
Widgets is noexcept. The fact that swapping higher-level data structures can
generally be noexcept only if swapping their lower-level constituents is noex-

cept is the reason why you should strive to offer noexcept swap functions.

By now, [hope you're excited about the optimization opportunities that noexcept
affords. Alas, I must temper your enthusiasm. Optimization is important, but cor-
rectness is more important. I noted at the beginning of this Item that noexcept is
part of a function’s interface, so you should declare a function noexcept only if
you are willing to commit to a noexcept implementation over the long term. If
you declare a function noexcept and later regret that decision, your options are
bleak. You can remove noexcept from the function’s declaration (i.e., change its
interface), thus running the risk of breaking client code. You can change the im-
plementation such that an exception could escape, but keep the original (now in-
correct) exception specification. If you do that, your program will be terminated if
an exception tries to leave the function. Or you can resign yourself to your existing
implementation, abandoning whatever motivated your desire to change the im-

plementation in the first place. None of these options is appealing.

The fact of the matter is that most functions are exception-neutral. Such functions
throw no exceptions themselves, but functions they call might emit one. When that
happens, the calling function allows the emitted exception to pass through on its
way to a handler further up the call chain. Exception-neutral functions are never
noexcept, because they may emit such “just passing through” exceptions. Most

functions, therefore, quite properly lack the noexcept designation.

Comment [sdm1]: Style: Code + Term Intro-
duction.

J

Ul D W N

© 00 N o

10

12
13
14
15
16
17
18
19
20

21
22
23
24
25

Some functions, however, have natural implementations that emit no exceptions,
and for a few more—notably the move operations and swap—being noexcept has
such a significant payoff, it's worth implementing them in a noexcept manner if at

all possible.t Mhen you can honestly say that a function should never emit excep-

tions, you should definitely declare it noexcept[. 7777777777777777777777777 o -- {

Comment [sdm2]: Should I say that constexpr
functions are typically good candidates for noex-
cept?

Please note that [said some functions have natural noexcept implementations.
Twisting a function’s implementation to permit a noexcept declaration is the tail
wagging the dog. Is putting the cart before the horse. Is not seeing the forest for
the trees. Is...choose your favorite metaphor. If a straightforward function imple-
mentation might yield exceptions (e.g., by invoking a function that might throw),
the hoops you’ll jump through to hide that from callers (e.g., catching all excep-
tions and replacing them with status codes or special return values) will not only
complicate your function’s implementation, it will typically complicate code at call
sites, too (e.g., code there may have to check for status codes or special return val-
ues). The runtime cost of those complications (e.g., extra branches, larger functions
that put more pressure on instruction caches, etc.) could exceed any speedup
you’d hope to achieve via noexcept, plus you'd be saddled with source code that’s
more difficult to comprehend and maintain. That'd hardly be exemplary software
engineering. As a general rule, the only time it makes sense to actively search for a

noexcept algorithm is when you’re implementing the move functions or swap.

Two more points about noexcept functions are worth mentioning. First, in C++98,
it was considered bad style to permit the memory deallocation functions (i.e., op-
erator delete and operator delete[]) and destructors to emit exceptions, and
in C++11, this style rule has been all but upgraded to a language rule. By default, all

memory deallocation functions and all destructors—both user-defined and com-

t The prescribed declarations for move operations on containers in the Standard Library
lack noexcept. However, implementers are permitted to strengthen exception specifica-
tions for Standard Library functions, and, in practice, it is common for at least some con-
tainer move operations to be declared noexcept. That practice exemplifies this Item’s ad-
vice. Having found that it’s possible to write container move operations such that excep-
tions never need to be emitted, implementers often declare the operations noexcept, even

though the Standard does not require them to do so.

N O oW e

(o0}

10

11
12

13
14
15

16

17
18

19
20
21
22
23
24
25
26
27

28
29
30

piler-generated—are implicitly noexcept. There’s thus no need to declare them
noexcept. (Doing so doesn’t hurt anything, it's just unconventional.) The only
time a destructor is not implicitly noexcept is when a data member of the class
(including inherited members and those contained inside other data members) is
of a type that expressly states that its destructor may emit exceptions (e.g., de-
clares it “noexcept(false)”). Such destructors are uncommon. There are none in

the Standard Library.

Second, let me elaborate on my earlier observation that compilers typically offer
no help in identifying inconsistencies between function implementations and their
exception specifications. Consider this code, which is perfectly legal:

void setup(); // functions defined elsewhere
void cleanup();

void doWork() noexcept

{
setup(); // set up work to be done
// do the actual work
cleanup(); // perform cleanup actions
}

Here, doWork is declared noexcept, even though it calls the non-noexcept func-
tions setup and cleanup. This seems contradictory, but it could be that setup
and cleanup document that they never emit exceptions, even though they’re not
declared that way. There could be good reasons for their non-noexcept declara-
tions. For example, they might be part of a library written in C. (Even functions
from the C Standard Library that have been moved into the std namespace lack
exception specifications, e.g., std::strlen isn't declared noexcept.) Or they
could be part of a C++98 library that decided not to use C++98 exception specifica-

tions and hasn’t yet been revised for C++11.

Because there are legitimate reasons for noexcept functions to rely on code lack-
ing the noexcept guarantee, C++ permits such code, and compilers generally don’t

issue warnings about it.

Things to Remember

L]

¢

¢

noexcept is part of a function’s interface, so callers may depend on it.
noexcept functions are more optimizable than non-noexcept functions.
noexcept is particularly valuable for the move operations and for swap.

Most functions are exception-neutral rather than noexcept.

