
12345678910111213141516171819202122232425262728

Item 1 In C++9 summar straints exceptio the doo sponded because sons, C+ and libr ly imple Over tim function either a see one specific tions co
noexce you wri Why? B There a “this fun Suppose tion. Th
int f(

int f(

 19: Decla98, exceptionrize the exc on the funcon specificar to consisted to the impe an excepti++98 excepraries generement them.me, a consen’s exceptioa function me. This mayations, whicontinue to b
ept is for fuite a functioecause it peare two reasnction emitse we have ae C++98 and
int x) th

int x) no

are functn specificatiception typction’s impleation might ency errors plementatioon specification specifially shied aw. ensus emeron-emitting ight emit anybe-or-neverch essentialle legal in C+unctions thaon that can ermits compsons for this no exceptio function f d C++11 wa
hrow();

oexcept;

tions noeions were rpes a functiementation.have to be (i.e., an exceon), it also mation is partcations nevway from th
ged that thbehavior wn exception or dichotomyly replace C+++11 and C+at guaranteemake that gpilers to geneis, but we’ll ons” differs that promisys of expres
 // C++
 // exc

 // C++
 // exc

xcept whather tempeion might e. If the implupdated, toeption specimeant that ct of a functiver gained mhem, and som
he only meawas whetheror it guarany forms the++98’s. (C++++14, but the they’ll nevguarantee, yerate betterbegin withfrom C++11ses callers thssing that ar
+98 approa
ceptions

+11 approa
ceptions

henever eramental bemit, and thementation oo, and thatification thacallers mighon’s interfamuch populme compile
aningful infor it had anynteed that cae basis of C+98-style exhey’re deprever emit an you’ll want r code. h how C++91’s. hey’ll never re:
ach: f emi

ach: f emi

possiblebeasts. You hhis imposedwas changet not only oat no longer ht stop comce. For theslarity. Devers didn’t eve
ormation aby. Black or allers wouldC++11’s excxception speecated.) In Cexception. to use noex
8’s way of
receive an e
its no

its no

e. had to d con-ed, the opened corre-mpiling, se rea-lopers en ful-
bout a white: never eption ecifica-C++11, When
xcept.
saying
excep-

Perhaps surprisingly, neither C++98 nor C++11 permits compilers to reject code in 1
f that could violate these exception specifications. As a result, f could be imple-2 mented like this: 3
int f(int x) noexcept // C++98 version would use "throw()" 4
{ 5
 if (x >= 0) return x * x - 42; // if x >= 0 … 6
 throw std::invalid_argument(// else throw! 7
 "Invalid value for x: " + std::to_string(x) 8
); 9
} 10 This may look absurd, but it’s perfectly legal C++. Furthermore, looks aren’t every-11 thing. The code here could be a way of enforcing the precondition that x must be 12 non-negative. If f is called with a legitimate value, it doesn't throw. However, if an 13 invalid value is passed in, the precondition violation causes the function to have 14 undefined behavior, and this implementation uses that freedom—undefined be-15 havior means that anything can happen—to throw an exception. 16 As an aside, note the use of std::to_string to produce a textual representation 17 of the value of x. Among C++11’s lesser-known features is a set of overloaded 18
std::to_string functions that produce std::string objects from numeric val-19 ues. The Standard Library has functions to perform the reverse transformations, 20 too (i.e., from std::strings to ints, unsigneds, doubles, etc.), but the naming 21 convention for those functions, albeit following a consistent pattern, is rather cryp-22 tic: stoi, stol, stod, etc. The C++11 Standard Library also offers std::wstring-23 based versions of all these functions. 24 But back to the difference in meaning between these two declarations: 25
int f(int x) throw(); // C++98 approach 26
int f(int x) noexcept; // C++11 approach 27 If, at runtime, an exception leaves f, f’s exception specification is violated. With 28 the C++98 approach, the call stack is unwound to f’s caller, then the unexpected 29
handler function is invoked, and that leads to program termination (typically by 30 calling std::terminate). With the C++11 approach, runtime behavior is slightly 31

different: the stack is possibly unwound, then program execution is terminated 1 (typically by calling std::terminate). 2 The fact that, with noexcept, the call stack only might be unwound turns out to 3 make a big difference during code generation. Optimizers are no longer con-4 strained to keep the runtime stack in an unwindable state if an exception would 5 propagate out of the function, nor must they ensure that objects in a noexcept 6 function are destroyed in the inverse order of construction should an exception 7 leave the function. The result is greater opportunities for optimization, not only 8 within the body of a noexcept function, but also at call sites to the function. This 9 degree of flexibility is present only for noexcept functions. Functions with 10 “throw()” exception specifications lack it, as do functions with no exception speci-11 fication at all. The situation can be summarized this way (where it doesn’t make 12 any difference what func does): 13
RetType func(parameters) noexcept; // more optimizable 14
RetType func(parameters) throw(); // less optimizable 15
RetType func(parameters); // less optimizable 16 This alone should provide sufficient motivation to declare functions noexcept 17 whenever you can. For some functions, however, the case is even stronger. 18 The move operations are the preeminent example. Suppose you have a large in-19 vestment in a C++98 code base making use of std::vectors of Widgets. Widgets 20 are added to the std::vectors from time to time, perhaps via push_back: 21
std::vector<Widget> vw; 22
… 23
Widget w; 24
… // put w into proper state 25
 // for addition to vw 26
vw.push_back(w); // add w to vw 27
… 28 Assume this code works fine, and you have no interest in modifying it for C++11. 29 However, you do want to take advantage of the fact that C++11’s move semantics 30

can improve the performance of existing code when move-enabled types are in-1 volved. You therefore ensure that Widget has move operations, either by writing 2 them yourself or by seeing to it that the conditions for their automatic generation 3 are fulfilled (see Item 20). 4 When a new element is added to a std::vector via push_back, it’s possible that 5 the std::vector lacks space for it, i.e., that the std::vector’s size is equal to its 6 capacity. When that happens, the std::vector allocates a new, larger, chuck of 7 memory to hold its elements, and it transfers the elements from the existing chunk 8 of memory to the new one. In C++98, the transfer was accomplished by copying 9 each element from the old memory into the new memory, then destroying the cop-10 ies in the old memory. This approach enabled push_back to offer the strong ex-11 ception safety guarantee: if an exception was thrown during the copying of the el-12 ements, the state of the std::vector remained unchanged, because none of the 13 elements in the original memory was destroyed until all elements had been suc-14 cessfully copied into the new memory. 15 In C++11, a natural optimization would be to replace the copying of std::vector 16 elements with moves. Unfortunately, doing this runs the risk of violating 17
push_back’s exception safety guarantee. If n elements have been moved from old 18 memory to new and an exception is thrown moving element n+1, the push_back 19 operation can’t run to completion. But the original std::vector has been modi-20 fied: n of its elements have been moved from. Restoring their original state may 21 not be possible, because attempting to move each object back into the original 22 memory may itself yield an exception. 23 This is a serious problem, because the behavior of your C++98 code base could de-24 pend on push_back’s strong exception safety guarantee. C++11 implementations 25 therefore can’t silently replace copy operations inside push_back with moves. 26 They must continue to employ copy operations. Unless, that is, it’s known that the 27 move operations are guaranteed not to emit exceptions. In that case, replacing el-28 ement copy operations inside push_back with move operations would be safe, 29 and the only side effect would be improved performance. 30

std::vector::push_back takes advantage of this “move if you can, but copy if 1 you must” strategy, and it’s not the only function in the Standard Library that does. 2 Other functions sporting the strong exception safety guarantee in C++98 (e.g., 3
std::vector::reserve, std::deque::insert, etc.) behave the same way. All 4 these functions replace calls to copy operations in C++98 with calls to move opera-5 tions in C++11 if (and only if) the move operations are known to never emit excep-6 tions. But how can a compiler know if a move operation won’t produce an excep-7 tion? The answer is obvious: it checks to see if the operation is declared noex-8
cept.* 9 And yet, it’s not quite that simple. Popping the hood and peeking inside to see how 10 things work is instructive, so here we go. 11 Inside a function like push_back, suppose we want to transfer an object from one 12 location in memory to another (i.e., copy or move it, depending on what is appro-13 priate). Assume we have an iterator, src, referring to the object to be transferred 14 and a second iterator, dest, referring to where it should go. Our code would have a 15 statement like this: 16
*dest = *src; // transfer *src to *dest; 17
 // this is incorrect 18 The statement would be inside a loop, because we’d ultimately need to transfer all 19 the objects in the container, but understanding how things work for one object is 20 all we need for this discussion. 21 As the comment indicates, the code is incorrect. The problem is that *src is an 22 lvalue, so this statement would unconditionally copy *src to *dest. That’d have 23 been fine in C++98, but in C++11, we want to do a move if we can. The usual way to 24 move an lvalue is to apply std::move to it: 25 * Alternatively, the function could have a C++98-style empty exception specification (i.e., “throw()”), but the only reason I can imagine why a move operation—something that didn’t exist in C++98 and therefore can’t be part of a legacy code base—would employ
throw() instead of noexcept would be to accommodate compilers with incomplete C++11 support, i.e., compilers where move operations are supported, but noexcept isn’t.

*dest = std::move(*src); // transfer *src to *dest; 1
 // this is incorrect 2 This is also incorrect, because now we’re moving *src, regardless of whether its 3 move assignment operator is noexcept. As we’ve discussed, doing that would 4 prevent push_back from maintaining its strong exception safety guarantee, and 5 maintaining that guarantee is essential for ensuring that code written under 6 C++98 continues to function properly. 7 The correct code takes advantage of std::move’s poorly publicized cousin, 8
std::move_if_noexcept: 9
*dest = std::move_if_noexcept(*src); // transfer *src to *dest; 10
 // this is correct 11 Conceptually, std::move_if_noexcept causes *src to be moved if its move as-12 signment operator is noexcept, and otherwise it causes *src to be copied. That’s 13 exactly what we want, and that’s why this code is correct. Uses of 14
std::move_if_noexcept are scattered throughout strongly exception safe func-15 tions in the Standard Library, and that’s why you have a special incentive to de-16 clare your move operations noexcept: it enables their use inside such functions. 17 The conceptual description of std::move_if_noexcept deviates from its true 18 behavior in two small ways. First, if std::move_if_noexcept is invoked on an 19 object of a move-only type, a move will be performed, even if it might yield an ex-20 ception. This is understandable: what else can std::move_if_noexcept do, giv-21 en that the type can’t be copied? Besides, this behavior can’t break legacy code, 22 because there was no such thing as a move-only type in C++98. 23 Second, std::move_if_noexcept, like std::move, doesn’t actually move any-24 thing. Rather, it performs a cast to an rvalue that, through overloading resolution, 25 can cause a move assignment operator or a move constructor to be invoked. It’s 26 these functions that actually move values around. For details on the relationship 27 among std::move (and std::move_if_noexcept), casting to rvalues, move op-28 erations, and overload resolution, consult Item 21. 29 Accompanying the move operations on the list of functions where a noexcept dec-30 laration is especially beneficial is swap. Being a heavily-used function, the optimi-31

zation opportunities that noexcept affords are unusually worthwhile. (Many algo-1 rithms rely on swap, as do implementations of many copy assignment operators.) 2 Furthermore, whether particular versions of swap in the Standard Library are no-3
except is sometimes dependent on whether user-defined type-specific swaps are 4
noexcept. For example, the declarations for the Standard Library’s swaps for ar-5 rays and for std::pair are: 6
template <class T, size_t N> 7
void swap(T (&a)[N], 8
 T (&b)[N]) noexcept(noexcept(swap(*a, *b))); 9
template <class T1, class T2> 10
struct pair { 11
 … 12
 void swap(pair& p) noexcept(noexcept(swap(first, p.first)) && 13
 noexcept(swap(second, p.second))); 14
 … 15
}; 16 These functions are conditionally noexcept: whether they are noexcept depends 17 on whether the expressions inside the noexcepts are. Given two arrays of Widget, 18 for example, swapping them is noexcept only if swapping individual elements 19 from the arrays is noexcept, i.e., if swap for Widget is noexcept. The author of 20
Widget’s swap thus determines whether swapping arrays of Widget is noexcept 21 (which, in turn, could determine whether other swaps are noexcept, e.g., swap for 22 arrays of arrays of Widget). Similarly, whether swapping two std::pair objects 23 containing Widgets is noexcept depends on whether swap for Widgets is noex-24
cept. 25 The fact that swapping higher-level data structures can generally be noexcept 26 only if swapping their lower-level constituents is noexcept is the reason why you 27 should strive to offer noexcept swap functions. 28 Because noexcept is part of a function’s interface, you should declare a function 29
noexcept only if you are willing to commit to a noexcept implementation over 30 the long term. If you declare a function noexcept and implement it accordingly, 31 then later decide you wish you hadn’t made the noexcept promise, your options 32 are bleak. You can remove noexcept from the function’s declaration, thus running 33 the risk of breaking arbitrary amounts of client code. You can retain the noexcept 34

Comment [sdm1]: Font should be both code and Term Introduction.

declaration, but change the implementation such that an exception could actually 1 escape. In that case, if an exception did escape at runtime, your program would be 2 terminated. Or you can retain your existing implementation, thus abandoning 3 whatever motivated you to want to change the implementation in the first place. 4 None of these options is appealing. 5 Most functions are exception-neutral: they don’t throw exceptions themselves, but 6 if a function they call produces one (directly or indirectly), the exception causes no 7 harm as it passes through on its way to a hander in a different function. Exception-8 neutral functions aren’t noexcept, because exceptions may pass through them. 9 Most functions, therefore, aren’t noexcept. 10 Some functions, however, are naturally noexcept, and for a few more—notably 11 the move operations and swap—being noexcept has such a significant payoff, it’s 12 worth implementing them in a noexcept manner if at all possible. When you can 13 honestly say that a function should never emit exceptions, you should definitely 14 declare it noexcept. 15
Things to Remember 16
 noexcept functions offer more optimization opportunities than non-17

noexcept functions. 18
 C++98 functions offering the strong exception safety guarantee may internally 19 call std::move_if_noexcept instead of std::move. 20
 Strive to declare the move operations and swap noexcept. 21 22

